Answer:
Final speed after 2 seconds = 34.6 m/s
Explanation:
Given:
Initial speed of coin (u) = 15 m/s
Time taken = 2 seconds
Find:
Final speed after 2 seconds
Computation:
Gravitational acceleration of earth = 9.8 m/s²
Using first equation of motion;
v = u + at
or
v = u + gt
where,
v = final velocity
u = initial velocity
g = Gravitational acceleration
t = time taken
v = 15 + 9.8(2)
v = 15 + 19.6
Final speed after 2 seconds = 34.6 m/s
<span>Because you are running so fast, your body produces a lot of lactate. Along with this lactate comes a hydrogen ion (H+), and you can’t have too many of these in the body because they will make the body fluids acidic. So the body “buffers” the H+ using biocarbonate (HCO3-) which produces CO2 and H2O. This raises the CO2 concentration of your blood, which is detected by receptors in the aorta and carotid arteries, and the respiratory centre of the brain, which then causes you to breath more deeply and more frequently.</span>
Answer:
The inductance of solenoid A is twice that of solenoid B
Explanation:
The inductance of a solenoid L is given by
L = μ₀n²Al where n = turns density, A = cross-sectional area of solenoid and l = length of solenoid.
Given that d₁ = 2d₂ and l₂ = 2l₁ and d₁ and d₂ are diameters of solenoids A and B respectively. Also, l₁ and l₂ are lengths of solenoids A and B respectively.
Since we have a cylindrical solenoid, the cross-section is a circle. So, A = πd²/4.
Let L₁ and L₂ be the inductances of solenoids A and B respectively.
So L₁ = μ₀n²A₁l₁ = μ₀n²πd₁²l₁/4
L₂ = μ₀n²A₂l₂ = μ₀n²πd₂²l₂/4
Since d₁ = 2d₂ and l₂ = 2l₁, sub
L₁/L₂ = μ₀n²πd₁²l₁/4 ÷ μ₀n²πd₂²l₂/4 = d₁²/d₂² × l₁/l₂ = (2d₂)²/d₂² × l₁/2l₁ = 4d₂²/d₂² × l₁/2l₁ = 4 × 1/2 = 2
L₁/L₂ = 2
L₁ = 2L₂
So, the inductance of solenoid A is twice that of solenoid B
60.3° from due south and 5.89 m/s For this problem, first calculate a translation that will put John's destination directly on the origin and apply that translation to Mary's destination. Then the vector from the origin to Mary's new destination will be the relative vector of Mary as compared to John. So John is traveling due south at 6.7 m/s. After 1 second, he will be at coordinates (0,-6.7). The translation will be (0,6.7) Mary is traveling 28° West of due south. So her location after 1 second will be (-sin(28)*10.9, -cos(28)*10.9) = (-5.117240034, -9.624128762) After translating that coordinate up by 6.7, you get (-5.117240034, -2.924128762) The tangent of the angle will be 2.924128762/5.117240034 = 0.57142693 The arc tangent is atan(0.57142693) = 29.74481039° Subtract that value from 90 since you want the complement of the angle which is now 60.25518961° So Mary is traveling 60.3° relative to due south as seen from John's point of view. The magnitude of her relative speed is sqrt(-5.117240034^2 + -2.924128762^2) = 5.893783 m/s Rounding the results to 3 significant digits results in 60.3° and 5.89 m/s
Answer: Gamma-rays have the smallest wavelengths and the most energy of any other wave in the electromagnetic spectrum. These waves are generated by radioactive atoms and in nuclear explosions. Gamma-rays can kill living cells, a fact which medicine uses to its advantage, using gamma-rays to kill cancerous cells.
Explanation: :)