The particle with sharp ends have the slowest rate of deposition
Answer: Option C
<u>Explanation:</u>
As per aerosol physics, deposition is a process where aerosol particles accumulate or settle on solid surfaces. Thereby, it reduces the concentration of particles in the air. Deposition velocity (rate of deposition) defines from F = vc, where v is deposition rate, F denotes flux density and c refers concentration.
Deposition velocity is slowest for particles of intermediate-sized particles because the frictional force offers resistance to the flow. Density is directly proportional to the deposition rate so clearly shows that high-density particles settle faster. Due to friction, round and large-sized particles deposit faster than oval/flattened sediments.
Answer:
There is a loss of fluid in the container of 0.475L
Explanation:
To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.
The formula that describes this thermal expansion process is given by:

Where,
Change in volume
Initial Volume
Change in temperature
coefficient of volume expansion (Coefficient of copper and of the liquid for this case)
There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,

Where,
= Change in the volume of liquid
= Change in the volume of copper
Then replacing with the previous equation we have:


Our values are given as,
Thermal expansion coefficient for copper and the liquid to 20°C is




Replacing we have that,



Therefore there is a loss of fluid in the container of 0.475L
Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

If the package is barely lifted, that means that T=m_2*g; then:

Solving the equation for a_mín, we have:

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey: 
For the package: 
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package: 
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

Solving a, we have

We can then replace this value of a in one for the sums of force and find the tension T:

Answer:
see the attachment
Explanation:
take coordinate system correctly. use formulas of projectile motion