Answer:
None, if air resistance is ignored.
Explanation:
At any instant, the projectile has vertical and horizontal components of velocity.
Vertical acceleration due to gravity affects the vertical velocity by accelerating the object toward the center of the earth, and by decreasing the upward vertical velocity..
The horizontal component of velocity makes the object travel horizontally as long as the projectile is airborne.
Thsi discussion assumes that air resistance is ignored.
Answer:
I₁ > I₃ > I₂
Explanation:
Taking the pic shown, we have
m₁ = 10m₀
m₂ = 2m₀
m₃ = m₀
r₁ = r₀
r₂ = 2r₀
r₃ = 3r₀
We apply the formula
I = mr²
then
I₁ = m₁r₁² = (10m₀)(r₀)² = 10m₀r₀²
I₂ = m₂r₂² = (2m₀)(2r₀)² = 8m₀r₀²
I₃ = m₃r₃² = (m₀)(3r₀)² = 9m₀r₀²
finally we have
I₁ > I₃ > I₂
The most common unit is meters (m for short). It is the base unit for distance or displacement in the metric system. If you are dealing with larger distances, you might use kilometers (I'm for short) which is just 1000 meters. On the other hand, centimeter (cm) are used for small distances and are 1/100 of a meter. Another common unit is millimeters (mm) which is 1/1000 of a meter.
1 meter = 1e9 nm
To get meters, divide nanometers by 1e9: 9.95nm / 1x10^9 = 9.95x10^-9 meters
Answer: 9.95e-9 meters
Answer:
1 / 2 m v^2 = L m g (1 - cos θ)
This is the KE due to the pendulum falling from a 25 deg displacement
v^2 = 2 L g (1 - cos 25) = 2 * 2 * 9.8 (1 - .906) = 3.67 m^2/s^2
v = 1.92 m/s this is the speed due to an initial displacement of 25 deg
Its speed at the bottom would then be
1.92 + 1.2 = 3.12 m/s since it gains 1.92 m/s from its initial displacement