Answer:
The mass of water to be added is 2 pounds
Explanation:
The given parameters are;
The mass of the given solution = 2 pounds
The concentration of the given solution = 30%
The desired concentration of the solution = 15%
The mass, m of the acetic acid in the given solution = 30% × 2 pounds
m = 30/100 × 2 pounds = 0.6 pounds
To make a 15% acetic acid solution of acetic acid, the mass X of the required volume, is given as follows;
15% of X = 0.6 pounds
15/100 × X = 3/20 × 0.6 pounds
∴ The mass of the solution required X = 0.6 × 20/3 = 4 pounds
The mass of the solution that will contain 0.6 pounds of acetic acid giving a 15% acetic acid solution is 4 pounds
Therefore, the mass of water to be added to the original solution to make the a 15% acetic acid solution is 2 pounds.
Answer:
Graphite is insoluble in water and organic solvents - for the same reason that diamond is insoluble. Attractions between solvent molecules and carbon atoms will never be strong enough to overcome the strong covalent bonds in graphite. conducts electricity.
Explanation:
Brainlest please?
Answer:
a. Approximately
.
b. Approximately
.
Explanation:
The unit of concentration "
" is equivalent to "
", which means "moles per liter."
However, the volume of both solutions were given in mililiters
. Convert these volumes to liters:
.
.
In a solution of volume
where the concentration of a solute is
, there would be
(moles of) formula units of this solute.
Calculate the number of moles of
formula units in each of the two solutions:
Solution in a.:
.
Solution in b.:
.
What volume of that
(same as
)
solution would contain that many
For the solution in a.:
.
Convert the unit of that volume to milliliters:
.
Similarly, for the solution in b.:
.
Convert the unit of that volume to milliliters:
.
Answer:
Herbivores only eat plants . Remember HERBS are PLANTS.
Carnivores only eat meat. Remember CARNE = MEAT in Spanish.
Omnivores eat MEAT & PLANTS.
Explanation:
Differences are what they eat, similarities omnivores eat both.
K gives 1 electron, and Br takes 1 electron.