Answer:
Lets take all factors into consideration first
The door is a rectangle and the area of a rectangle is length times width
Let the width be w
Let the length be l
Equation length × breadth = area
(w+48)w = 3024
w^2 + 48w = 3024
w^2 + 48w - 3024 = 0
w^2 + 84w - 36w - 3024 = 0
w(w + 84) -36 ( w + 84) = 0
(w + 84) (w - 36) = 0
w + 84 = 0 AND w - 36 =0
w = -84 and w = 36
Since width cannot be negative, the right answer is 36
How did I get 84 and 36? Well, I had to factorize 3024 and since 84 times 36 is 3024 and 84 minus 36 is 48, I chose them.
Answer:
The vertex form is y = (x + 4)² - 13
The minimum value of the function is -13
Step-by-step explanation:
∵ y = x² + 8x + 3
∵ 8x ÷ 2 = 4x ⇒ (x) × (4)
∴ We need ⇒ x² + 8x + 16 to be completed square
∴ y = (x² + 8x + 16) - 16 + 3 ⇒ we add 16 and subtract 16
∴ y = (x + 4)² - 13 ⇒ vertex form
∵ The vertex form is (x - a)² + b
Where a is the x-coordinate of the minimum point and b is y-coordinate of the minimum point (b is the minimum value of the function)
∴ The minimum value is -13
A
This is because 4x18 = 72
Hope this helps