Answer:
Acosθ
Explanation:
The x-component of a vector is defined as :
Magnitude * cosine of the angle
Maginitude * cosθ
The magnitude is represented as A
Hence, horizontal, x - component of the vector is :
Acosθ
Furthermore,
The y-component is taken as the sin of the of the angle multiplied by the magnitude
Vertical, y component : Asinθ
Yeah, it's every state. Atoms need a certain quanta of energy to jump to each state of energy, and therefore change state depending on how much energy is absorbed and/or released. This applies to all states of matter.
Answer:
T=183.21K
Explanation:
We have to take into account that the system is a ideal gas. Hence, we have the expression

where P is the pressure, V is the volume, n is the number of moles, T is the temperature and R is the ideal gas constant.
Thus, it is necessary to calculate n and V
V is the volume of a sphere

V=8.86*10^{50}L
and for n

Hence, we have (1 Pa = 9.85*10^{-9}atm)

hope this helps!!
Answer:
Explanation:
the one thrown below the horizontal is going straight down, while the one above the horizontal will experience a projectile motion which will makes it move farther away from the building where it was projected.