Answer:
75.71 m/s
Explanation:
From equation of motion, acceleration is given by
where v is the final velocity, u is the initial velocity and t is time taken.
Making v the subject of the above formula
v=at+u
Substituting 6.7 s for time, t and 11.3 for a and taking u as zero since it starts from rest
v=11.3*6.7=75.71 m/s
because as the distance increases the gravitational force decreases so the weight of a body decreases
Yes that's correct. Also zeros in between non-zero numbers are significant figures
Answer:
Its initial position was 471 m.
Explanation:
We have,
Final position of the object is 327 m
Displacement of the object is -144 m
It is required to find its initial position. The difference of final and initial position is equal to the displacement of the object. So,

So, its initial position was 471 m.
Since the ladder is standing, we know that the coefficient
of friction is at least something. This [gotta be at least this] friction
coefficient can be calculated. As the man begins to climb the ladder, the
friction can even be less than the free-standing friction coefficient. However,
as the man climbs the ladder, more and more friction is required. Since he
eventually slips, we know that friction is less than what's required at the top
of the ladder.
The only "answer" to this problem is putting lower
and upper bounds on the coefficient. For the lower one, find how much friction
the ladder needs to stand by itself. For the most that friction could be, find
what friction is when the man reaches the top of the ladder.
Ff = uN1
Fx = 0 = Ff + N2
Fy = 0 = N1 – 400 – 864
N1 = 1264 N
Torque balance
T = 0 = N2(12)sin(60) – 400(6)cos(60) – 864(7.8)cos(60)
N2 = 439 N
Ff = 439= u N1
U = 440 / 1264 = 0.3481