Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)
Answer:
The work done by the gravel to stop the truck is 520.44 kJ
Explanation:
<u>Step 1</u>: Data given
Mass of the truck = 3047.8 kg
The ramp has an angle of 9.5 °
Velocity of the truck = 20.68 m/s
distance = 26.6 meters
<u>Step 2:</u> Calculate initial kinetic energy
sin 9.5° = 0.165
h = ℓ*sin 9.5° = 26.6*0.165= 4.39 m
Ek = 1/2m*Vo² = 1/2*3047.8*20.68² = 651714.7 Joule = 651.7 kJ = initial kinetic energy
<u>Step 3: </u>Calculate potential energy
Epot = U = m*g*h = 3047.8*9.81*4.39 = 131256.25 Joule = 131.26 kJ
<u>Step 4:</u> What work is done by the truck on the gravel?
Frictional energy Ef = 651.7 kJ - 131.26 kJ = 520.44 kJ
Answer:
15.88°C I am not 100% sure this is right but I am 98% sure this IS right
The correct answer is C) towards the center of the circle.
Although the object is moving at a constant speed it is constantly accelerating due to the constant change in direction as it describes the circular path. This causes a constant change in velocity as velocity is a vector quantity.
For the object to maintain the circular path there has to be centripetal force acting on the object and this centripetal force is directed towards the center of the circle.
Answer:
Video
Explanation:
Hope this helps! If it does, drop a 5 star!