Answer:
Explanation:
The heat required to change the temperature of steam from 125.5 °C to 100 °C is:

The heat required to change the steam at 100°C to water at 100°C is;

The heat required to change the temperature from 100°C to 0°C is

The heat required to change the water at 0°C to ice at 0°C is:

The heat required to change the temperature of ice from 0°Cto -19.5°C is:

The total heat required to change the steam into ice is:

b)
The time taken to convert steam from 125 °C to 100°C is:

The time taken to convert steam at 100°C to water at 100°C is:

The time taken to convert water to 100° C to 0° C is:

The time taken to convert water at 0° to ice at 0° C is :

The time taken to convert ice from 0° C to -19.5° C is:

Rub a balloon on a woolen fabric to pick up some electrons, to make the balloon negatively charged, and stick them to a wall, which would be positively charged to make them stick.
Opposites attract and when you stick a negatively charged objects to positively charged objects, they tend to stick together. When you pick up electrons, it increases the number of electrons which will make the object negatively charged.
Note: The first part of the answer is a single sentence. The problem says in a complete sentence, so just in case that you need only one sentence you can take the first part. If you can add in more than a sentence, you can put in more from the second paragraph.
The energy transferred by the appliance using mains electricity is 17.3 KJ
<h3>Data obtained from the question </h3>
- Potential difference (V) = 230V
- Charge (Q) = 150 C
<h3>How to determine the energy transferred </h3>
The energy transferred can be obtained as follow:
E = ½QV
E = ½ × 150 × 230
E = 75 × 230
E = 17250 J
Divide by 1000 to express in kilojoules
E = 17250 / 1000
E = 17.3 KJ
Learn more about energy stored in a capacitor:
brainly.com/question/14739936
Answer:
<h2>3 m/s^2</h2>
Explanation:
Step one:
given
Mass m= 4kg
Force F= 12N
Required
Acceleration the relation between force, acceleration, and mass is Newton's first equation of motion, which says a body will continue to be at rest or uniform motion unless acted upon by an external force
F=ma
a=F/m
a=12/4
a=3 m/s^2
Answer:
An <u>applied force</u> is a force that is applied to an object by a person or another object. If a person is pushing a desk across the room, then there is an applied force acting upon the object. The applied force is the force exerted on the desk by the person.
A <u>friction force</u> is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing intermolecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an object can be calculated using the formula below:
= µ •