1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetoff [14.1K]
3 years ago
8

Two bodies of masses 1000kg and 2000kg are separated 1km which is the gravitational force between them

Physics
1 answer:
denpristay [2]3 years ago
3 0

Answer:

1.33×10⁻¹⁰ N

Explanation:

F = GMm / r²

where G is the gravitational constant,

M and m are the masses of the objects,

and r is the distance between them.

F = (6.67×10⁻¹¹ N/m²/kg²) (1000 kg) (2000 kg) / (1000 m)²

F = 1.33×10⁻¹⁰ N

You might be interested in
Two particles each have the same mass but particle #1 has four times the charge of particle #2. Particle #1 is accelerated from
marin [14]

Answer:

 v_2 = 2*v  

Explanation:

Given:

- Mass of both charges = m

- Charge 1 = Q_1

- Speed of particle 1 = v

- Charge 2 = 4*Q_1

- Potential difference p.d = 10 V

Find:

What speed does particle #2 attain?

Solution:

- The force on a charged particle in an electric field is given by:

                                       F = Q*V / r

Where, r is the distance from one end to another.

- The Net force acting on a charge accelerates it according to the Newton's second equation of motion:

                                      F_net = m*a

- Equate the two expressions:

                                      a = Q*V / m*r

- The speed of the particle in an electric field is given by third kinetic equation of motion.

                                      v_f^2 - v_i^2 = 2*a*r

Where, v_f is the final velocity,

            v_i is the initial velocity = 0

                                      v_f^2 - 0 = 2*a*r

Substitute the expression for acceleration in equation of motion:

                                       v_f^2 = 2*(Q*V / m*r)*r

                                       v_f^2 = 2*Q*V / m

                                       v_f = sqrt (2*Q*V / m)

- The velocity of first particle is v:

                                       v = sqrt (20*Q / m)

- The velocity of second particle Q = 4Q

                                       v_2 = sqrt (20*4*Q / m)

                                       v_2 = 2*sqrt (20*Q / m)

                                       v_2 = 2*v  

3 0
3 years ago
Maria is comparing data from an investigation about the melting point of ice. Based on her research, she knows ice
erica [24]

Answer:

The answer Is set 4.

Explanation

8 0
3 years ago
Read 2 more answers
A 1.0-kg block moving to the right at speed 3.0 m/s collides with an identical block also moving to the right at a speed 1.0 m/s
____ [38]

Answer:

Speed of both blocks after collision is 2 m/s

Explanation:

It is given that,

Mass of both blocks, m₁ = m₂ = 1 kg

Velocity of first block, u₁ = 3 m/s

Velocity of other block, u₂ = 1 m/s

Since, both blocks stick after collision. So, it is a case of inelastic collision. The momentum remains conserved while the kinetic energy energy gets reduced after the collision. Let v is the common velocity of both blocks. Using the conservation of momentum as :

m_1u_1+m_2u_2=(m_1+m_2)v

v=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}

v=\dfrac{1\ kg\times 3\ m/s+1\ kg\times 1\ m/s}{2\ kg}

v = 2 m/s

Hence, their speed after collision is 2 m/s.

7 0
3 years ago
Which equations could be used as is, or rearranged to calculate for frequency of a wave? Check all that apply.
amm1812
-- Equations  #2  and  #6  are both the same equation,
and are both correct.

-- If you divide each side by  'wavelength', you get Equation #4,
which is also correct.

-- If you divide each side by  'frequency', you get Equation #3,
which is also correct. 
With some work, you can rearrange this one and use it to calculate
frequency.

Summary:

-- Equations #2, #3, #4, and #6 are all correct statements,
and can be used to find frequency.

-- Equations #1 and #5 are incorrect statements.
7 0
3 years ago
Read 2 more answers
An airplane is flying in the direction 10° east of south at 701 km/hr. Find the component form ofthe velocity of the airplane, a
solniwko [45]

Answer:

The component form will be;

In the x-axis = 121.73 due west

In the y-axis = 690.35 due south

Explanation:

An image of the calculation has been attached

7 0
3 years ago
Other questions:
  • 1.An 8-kilogram bowling ball is rolling in a straight line toward you. If its momentum is 16 kg•m/s, how fast is it traveling?
    10·1 answer
  • Why are brother anoying
    7·1 answer
  • In order to change the color of light you must change
    5·1 answer
  • I need help on this.
    7·1 answer
  • As the temperature of a fluid decreases— A The number of inter-particle collisions decrease and random movement of particles inc
    5·2 answers
  • Please help on this one?
    6·2 answers
  • Violet light of wavelength 400 nm ejects electrons with a maximum kinetic energy of 0.860 eV from sodium metal. What is the bind
    11·1 answer
  • A heated piece of metal cools according to the function c(x) = (.5)^(x _ 11), where x is measured in hours. A device is added th
    8·2 answers
  • The students look through the side of the aquarium.
    12·1 answer
  • A 40 kg dog is sitting on top of a hillside and has a potential energy of 1,568 J. What is the height of the hillside? (Formula:
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!