Answer:
v_2 = 2*v
Explanation:
Given:
- Mass of both charges = m
- Charge 1 = Q_1
- Speed of particle 1 = v
- Charge 2 = 4*Q_1
- Potential difference p.d = 10 V
Find:
What speed does particle #2 attain?
Solution:
- The force on a charged particle in an electric field is given by:
F = Q*V / r
Where, r is the distance from one end to another.
- The Net force acting on a charge accelerates it according to the Newton's second equation of motion:
F_net = m*a
- Equate the two expressions:
a = Q*V / m*r
- The speed of the particle in an electric field is given by third kinetic equation of motion.
v_f^2 - v_i^2 = 2*a*r
Where, v_f is the final velocity,
v_i is the initial velocity = 0
v_f^2 - 0 = 2*a*r
Substitute the expression for acceleration in equation of motion:
v_f^2 = 2*(Q*V / m*r)*r
v_f^2 = 2*Q*V / m
v_f = sqrt (2*Q*V / m)
- The velocity of first particle is v:
v = sqrt (20*Q / m)
- The velocity of second particle Q = 4Q
v_2 = sqrt (20*4*Q / m)
v_2 = 2*sqrt (20*Q / m)
v_2 = 2*v
Answer:
Speed of both blocks after collision is 2 m/s
Explanation:
It is given that,
Mass of both blocks, m₁ = m₂ = 1 kg
Velocity of first block, u₁ = 3 m/s
Velocity of other block, u₂ = 1 m/s
Since, both blocks stick after collision. So, it is a case of inelastic collision. The momentum remains conserved while the kinetic energy energy gets reduced after the collision. Let v is the common velocity of both blocks. Using the conservation of momentum as :



v = 2 m/s
Hence, their speed after collision is 2 m/s.
-- Equations #2 and #6 are both the same equation,
and are both correct.
-- If you divide each side by 'wavelength', you get Equation #4,
which is also correct.
-- If you divide each side by 'frequency', you get Equation #3,
which is also correct.
With some work, you can rearrange this one and use it to calculate
frequency.
Summary:
-- Equations #2, #3, #4, and #6 are all correct statements,
and can be used to find frequency.
-- Equations #1 and #5 are incorrect statements.
Answer:
The component form will be;
In the x-axis = 121.73 due west
In the y-axis = 690.35 due south
Explanation:
An image of the calculation has been attached