Answer:
Explanation:
We shall apply Doppler's effect of sound .
speaker is the source , Jason is the observer . Source is moving at 10 m /s , observer is moving at 6 m/s .
apparent frequency = 
V is velocity of sound , v₀ is velocity of observer and v_s is velocity of source and f_o is real frequency of source .
Here V = 340 m/s , v₀ is 6 m/s , v_s is 10 m/s . f_o = f
apparent frequency = 
= 
So m = 346 , n = 330 .
Your answer is going to be Appellate jurisdiction.
Answer:
8.8 m and 52.5 m
Explanation:
The vertical component and horizontal component of water velocity leaving the hose are


Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level



t = 3.49 or t = 0.58
We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down
t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building


Answer:
Telescope
Explanation:
Telescope is usually defined as an optical instrument that is commonly used to observe the objects in a magnified way that are located at a large distance from earth. These telescopes are comprised of lenses and curved mirrors that are needed to be arranged in a proper way in order to have a prominent look. It is commonly used by the astronomers.
This was first constructed by Hans Lippershey in the year 1608.
Answer:
Centripetal acceleration
Explanation:
- The centripetal acceleration is the motion inwards towards the center of a circular path.
- <em><u>Centripetal acceleration is given by; the square of the velocity, divided by the radius of the circular path.
</u></em>
ac = v²/r
Where; ac = acceleration, centripetal, m/s², v is the velocity, m/s and r is the radius, m