True.
Depending how accurate the graph is plotted
Solution :
The given figure is a loop of a wire with a resistor.
When the switch S is closed for long time and is suddenly opened, the direction of the induced current can be find out by using the rule of right hand screw. According to the right hand screw rule, the direction of the magnetic field at the loop is in the direction that points outwards. The strength of the current rapidly decreases as it is switch off and the magnetic flux that is linked with the loop wire will also decrease.
According to the Lenz's law, the direction of the induced current must be such
the decrease in the magnetic flux. It means the direction of the magnetic field must be outwards and also normal to the plane of the screen. The direction of the induced anti clockwise or from right to left in the resistance.
Sound waves are longitudal waves meaning they go back and forth
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Initially, the velocity vector is
. At the same height, the x-value of the vector will be the same, and the y-value will be opposite (assuming no air resistance). Assuming perfect reflection off the ground, the velocity vector is the same. After 0.2 seconds at 9.8 seconds, the y-value has decreased by
, so the velocity is
.
Converting back to direction and magnitude, we get 