Explanation:
What is IEEE 802.11?
IEEE 802.11 is a set of WLAN standards for communication developed by the Institute for Electrical and Electronics Engineers (IEEE) and is unarguably most widely used WLAN technology.
Features: IEEE 802.11a
- The operating frequency band is 5 GHz.
- The maximum theoretical data rate is 54 Mbps, the typical throughput is around 25 Mbps and minimum data rate is 6 Mbps.
- It can support 64 users per access point.
Features: IEEE 802.11b
- The operating frequency band is 2.4 GHz.
- The maximum theoretical data rate is 11 Mbps but typical throughput is around 6 Mbps and minimum data rate is 1 Mbps.
- It can support 32 users per access point.
Wireless Coverage IEEE 802.11a Vs IEEE 802.11b:
- Signal coverage is one of the most important factors among users.
- The transmission range of IEEE 802.11a is not greater than 100 ft in indoor setting whereas IEEE 802.11b has a superior performance in this regard with transmission range up to 150 ft in indoor setting.
- The data rate has a direct relation with the access point coverage area, a higher data rate means less coverage area and a lower data rate results in increased coverage.
Answer:
, repulsive
Explanation:
The magnitude of the electric force between two charged particles is given by Coulomb's law:
where:
is the Coulomb's constant
are the two charges of the two particles
r is the separation between the two charges
The force is:
- repulsive if the two charges have same sign
- Attractive if the two charges have opposite signs
In this problem, we have two electrons, so:
is the magnitude of the two electrons
is their separation
Substituting into the formula, we find the electric force between them:

And the force is repulsive, since the two electrons have same sign charge.
I would have to see the graph.. but by looking at one one online, they are between points D and E.
Answer:
The approximate change in entropy is -14.72 J/K.
Explanation:
Given that,
Temperature = 22°C
Internal energy 
Final temperature = 16°C
We need to calculate the approximate change in entropy
Using formula of the entropy

Where,
= internal energy
T = average temperature
Put the value in to the formula


Hence, The approximate change in entropy is -14.72 J/K.
Answer:
C) 40 N/m
Explanation:
If we ASSUME that the spring is un-stretched at the zero cm position
k = F/Δx = 10/0.25 = 40 N/m