we know there are 180° in π radians, how many degrees then in -3π/10 radians?
![\bf \begin{array}{ccll} degrees&radians\\ \cline{1-2} 180&\pi \\\\ x&-\frac{3\pi }{10} \end{array}\implies \cfrac{180}{x}=\cfrac{\pi }{~~-\frac{3\pi }{10}~~}\implies \cfrac{180}{x}=\cfrac{\frac{\pi}{1} }{~~-\frac{3\pi }{10}~~} \\\\\\ \cfrac{180}{x}=\cfrac{\pi }{1}\cdot \cfrac{10}{-3\pi }\implies \cfrac{180}{x}=-\cfrac{10}{3}\implies 540=-10x\implies \cfrac{540}{-10}=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill -54=x~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccll%7D%20degrees%26radians%5C%5C%20%5Ccline%7B1-2%7D%20180%26%5Cpi%20%5C%5C%5C%5C%20x%26-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cfrac%7B%5Cpi%7D%7B1%7D%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B10%7D%7B-3%5Cpi%20%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D-%5Ccfrac%7B10%7D%7B3%7D%5Cimplies%20540%3D-10x%5Cimplies%20%5Ccfrac%7B540%7D%7B-10%7D%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20-54%3Dx~%5Chfill)
Answer:
tbh i like the first one its so simple but like so nice at the same time
You can again ignore the parenthesis because you are not distributing anything.
Your equation will look like this
3x + 11 + 6x
You can move each of these numbers around any way you like. You can combine the 3x and the 6x if you want, but they did not do that. You cannot take the x away and put it in front of the 11 though.
B. is your answer. All they did was move the 6x inside the parenthesis and the 11 out of the parenthesis.
Always remember, when you are adding things together, the parenthesis don't matter!
Answer:
2 6/9. 2 24/36
Step-by-step explanation:
Answer:
2. There is also an irrelevant joke that 1 plus 1 equals window.
Step-by-step explanation: