Answer:
The maximum mass the bar can support without yielding = 32408.26 kg
Explanation:
Yield stress of the material (
) = 200 M Pa
Diameter of the bar = 4.5 cm = 45 mm
We know that yield stress of the bar is given by the formula
Yield Stress = 
⇒
=
---------------- (1)
⇒ Area of the bar (A) =
×
⇒ A =
× 
⇒ A = 1589.625 
Put all the values in equation (1) we get
⇒
= 200 × 1589.625
⇒
= 317925 N
In this bar the
is equal to the weight of the bar.
⇒
=
× g
Where
is the maximum mass the bar can support.
⇒
= 
Put all the values in the above formula we get
⇒
= 
⇒
= 32408.26 Kg
There fore the maximum mass the bar can support without yielding = 32408.26 kg
The value of the acceleration is 0.76 m/s² and the total time taken by the vehicle is 39 seconds.
<h3>Acceleration of the vehicle</h3>
The acceleration of the vehicle before coming to rest is calculated as follows;
v² = u² + 2as
where;
- v is the final velocity
- u is the initial velocity
- a is the acceleration
- s is the distance traveled before stopping
the car came to rest with constant velocity attained after 12 seconds.
the initial velocity of the car before 12 seconds is zero.
v² = 0 + 2as
a = v²/2s
a = (10²)/(2 x 66)
a = 0.76 m/s²
<h3>Time of motion of the vehicle</h3>
d = ut + ¹/₂at²
where;
- d is the total distance traveled
- t is the time of motion
- a is acceleration
- u is initial velocity of the vehicle
580 = 0 + ¹/₂(0.76)t²
580 = 0.38t²
t² = 580/0.38
t² = 1,526.3
t = √1,526.3
t = 39 seconds
Thus, the value of the acceleration is 0.76 m/s² and the total time taken by the vehicle is 39 seconds.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Answer:
10 J.
Explanation:
Given that,
Net force acting on the rake, F = 2 N
Distance moved by the rake, d = 5 m
We need to find the kinetic energy gained by the rake. We know that,
Kinetic energy = work done
So,
K = F×d
K = 2 N × 5 m
K = 10 J
So, 10 J of kinetic energy is gained by the rake.
Your pendulum does a complete swing in 1.9 seconds. You want to SLOW IT DOWN so it takes 2.0 seconds.
Longer pendulums swing slower.
You need to <em>make your pendulum slightly longer</em>.
If your pendulum is hanging by a thread or a thin string, then its speed doesn't depend at all on the weight at the bottom. You can add weight or cut some off, and it won't change the speed a bit.
Answer:
boron
aluminum
gallium
indium
thallium
Explanation:
Any of these could work. Nitrogen has 5 valence electrons so you just needed to pick an element that has 3 valence electrons that nitrogen could borrow. This periodic table shows valence electron counts: