Answer:
medium
Explanation:
<em>A sound </em><em>medium</em><em> is defined as channel through which sound can travel or be transmitted. </em>
Sound medium could be in the form gases, liquids, solids or plasmas. Space is made up of vacuum and therefore, has no medium within it. Hence, space cannot transmit sound in any form or allows sound to travel through it.
Answer:
x = 0.775m
Explanation:
Conceptual analysis
In the attached figure we see the locations of the charges. We place the charge q₃ at a distance x from the origin. The forces F₂₃ and F₁₃ are attractive forces because the charges have an opposite sign, and these forces must be equal so that the net force on the charge q₃ is zero.
We apply Coulomb's law to calculate the electrical forces on q₃:
(Electric force of q₂ over q₃)
(Electric force of q₁ over q₃)
Known data
q₁ = 15 μC = 15*10⁻⁶ C
q₂ = 6 μC = 6*10⁻⁶ C
Problem development
F₂₃ = F₁₃
(We cancel k and q₃)

q₂(2-x)² = q₁x²
6×10⁻⁶(2-x)² = 15×10⁻⁶(x)² (We cancel 10⁻⁶)
6(2-x)² = 15(x)²
6(4-4x+x²) = 15x²
24 - 24x + 6x² = 15x²
9x² + 24x - 24 = 0
The solution of the quadratic equation is:
x₁ = 0.775m
x₂ = -3.44m
x₁ meets the conditions for the forces to cancel in q₃
x₂ does not meet the conditions because the forces would remain in the same direction and would not cancel
The negative charge q₃ must be placed on x = 0.775 so that the net force is equal to zero.
Answer:
I think the right answer is option B.
Given
initial position = Xi= 19.9m
Final position Xf = 5.4m
Average velocity= Va = -0.418m/s
it shows displacement is reverse.
To find t=?
As Va = (Xf- Xi) / t
t = (Xf-Xi) / ( Va)
t = ( 5.4-19.9) / (-0.418)
t = (-14.5 ) / (-0.418) (-ve sign cancel out at numerator and denominator)
t =34.69 s
Answer:
Acceleration a ≤ 3 m/s^2
the greatest acceleration that the truck can have without losing its load is 3 m/s^2
Explanation:
For the truck to accelerate without losing its load.
Acceleration force of truck must be less than or equal to the maximum friction force between the truck bed and the load.
Fa ≤ F(friction)
But;
Fa = mass × acceleration
Fa = ma
ma ≤ F(friction)
a ≤ (F(friction))/m ......1
Given;
Fa = mass × acceleration
Fa = ma
mass m = 800 kg
F(friction) = 2400 N
Substituting the given values into equation 1;
a ≤ F(friction)/m
a ≤ 2400N/800kg
a ≤ 3 m/s^2
the greatest acceleration that the truck can have without losing its load is 3 m/s^2