Answer;
The temperature change for the second pan will be lower compared to the temperature change of the first pan
Explanation;
-The quantity of heat is given by multiplying mass by specific heat and by temperature change.
That is; Q = mcΔT
This means; the quantity of heat depends on the mass, specific heat capacity of a substance and also the change in temperature.
-Maintaining the same quantity of heat, with another pan of the same mass and greater specific heat capacity would mean that the change in temperature would be much less lower.
Boiling points are raised by hydrogen bonds because they make different molecules desire to "attach" to one another, which requires more energy to do so. In water, for instance, the hydrogen proton is in a state that resembles ionization because the connections between oxygen and hydrogen, while covalent, are strongly polar. The oxygen also receives a partial negative charge. Therefore, hydrogen bonds are formed when the electro-positive H in one molecule is strongly electrostatically attracted to the electro-negative O in nearby molecules. Despite being weak links, they are powerful enough to significantly alter the liquid's characteristics.
Thanks!
>> ROR
Answer:
Rutherford described the atom as consisting of a tiny positive mass surrounded by a cloud of negative electrons. Bohr thought that electrons orbited the nucleus in quantised orbits. Bohr built upon Rutherford's model of the atom. ... So it was not possible for electrons to occupy just any energy level.
Explanation:
Answer:
ω = 3.61 rad/sec
Explanation:
Firstly, we should know that the bug will not slip if friction can provide sufficient opposing force.
μmg = mv^2/r = mω^2r
Thus;
μg = ω^2r
ω^2 = μg/r
ω = √(μg/r)
ω = √(0.321 * 9.8)/0.241
ω = √(13.05)
= 3.61 rad/sec
Calculate the change in heat of the aluminum; show all calculations. Calculate the change in heat of the water; show all calculations. Are the two values the same? Why or why not? See the attached picture for the numbers.
I got -3443.14 J for the aluminum and 3443.595 for the water