1 liter = 1000 cm^3
20cm * 20cm * 20cm = 8000 cm^3
8000/1000 = 8 liters
Since 1ml of water = 1 cm^3 = 1 grams
8 liters = 8000 grams = 8 kilograms
We will first record its mass and then its volume by measuring its dimensions
then divide mass by volume and will get density of regular solid
Answer:
a) 39.6 m/s b) 4123 N
Explanation:
a) At the top of the loop, all of the forces point downwards (force of gravity and normal force).
Fnet=ma
ma=m(v^2/R) (centripetal acceleration)
mg=m(v^2/R)
m cancels out (this is why pilot feels weightless) so,
g=(v^2/R)
9.8 m/s^2 = v^2/160 m
v^2=1568 m^2/s^2
v=39.6 m/s
b) At the bottom of the loop, the normal force and the force of gravity point in opposite directions. The normal force is the weight felt.
Convert 300 km/hr to m/s
300 km/hr=83.3 m/s
Convert pilot's weight into mass:
760 N = 77.55 kg
Fnet=ma
n-mg=m(v^2/R)
n=(77.55 kg)(((83.3 m/s)^2)/160 m)+(77.55 kg)(9.8 m/s^2)
n=3363.2 N+760 N=4123 N
Answer:
Explanation:
A proton and electron are moving in the positive x direction, this shows that their velocity will be in the positive x direction
V = v•i
Magnetic field Is the positive z direction
B = B•k
A. For proton.
Proton has a positive charge of q
Direction of force on proton
Force is given as
F = q(v×B)
F = q( v•i × B•k)
F = qvB (i×k)
From vectors i×k = -j
F = -qvB •j
Then, for the positive charge, the force will act in the negative direction of the y-axis
B. For electron
Electron has a negative of -q
Direction of force on proton
Force is given as
F = q(v×B)
F = -q( v•i × B•k)
F = -qvB (i×k)
From vectors i×k = -j
F = --qvB •j
F = qvB •j
Then, for the negative charge, the force will act in the positive direction of the y-axis