For this case, let's
assume that the pot spends exactly half of its time going up, and half going
down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take
the bottom of the window to be zero on a vertical axis pointing upward. All calculations
will be made in reference to this coordinate system. <span>
An initial condition has been supplied by the problem:
s=1.80m when t=0.245s
<span>This means that it takes the pot 0.245 seconds to travel
upward 1.8m. Knowing that the gravitational acceleration acts downward
constantly at 9.81m/s^2, and based on this information we can use the formula:
s=(v)(t)+(1/2)(a)(t^2)
to solve for v, the initial velocity of the pot as it enters
the cat's view through the window. Substituting and solving (note that
gravitational acceleration is negative since this is opposite our coordinate
orientation):
(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2
v=8.549m/s
<span>Now we know the initial velocity of the pot right when it
enters the view of the window. We know that at the apex of its flight, the
pot's velocity will be v=0, and using this piece of information we can use the
kinematic equation:
(v final)=(v initial)+(a)(t)
to solve for the time it will take for the pot to reach the
apex of its flight. Because (v final)=0, this equation will look like
0=(v)+(a)(t)
Substituting and solving for t:
0=(8.549m/s)+(-9.81m/s^2)(t)
t=0.8714s
<span>Using this information and the kinematic equation we can find
the total height of the pot’s flight:
s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>
s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2
s=3.725m<span>
This distance is measured from the bottom of the window, and
so we will need to subtract 1.80m from it to find the distance from the top of
the window:
3.725m – 1.8m=1.925m</span>
Answer:
<span>1.925m</span>
Answer:
The depth is 5.15 m.
Explanation:
Lets take the depth of the pool = h m
The atmospheric pressure ,P = 101235 N/m²
The area of the top = A m²
The area of the bottom = a m²
Given that A= 1.5 a
The force on the top of the pool = P A
The total pressure on the bottom = P + ρ g h
ρ =Density of the water = 1000 kg/m³
The total pressure at the bottom of the pool = (P + ρ g h) a
The bottom and the top force is same
(P + ρ g h) a = P A
P a +ρ g h a = P A
ρ g h a = P A - P a




h=5.15 m
The depth is 5.15 m.
Element. element cannot be simplerfide
Answer:
A. The applied force should be the same size as the friction force
Explanation:
Whenever we apply a force to an object it moves if the force applied to that object is unbalanced and there is no force or a lesser force to counter it. According to Newton's Second Law of motion, when an unbalanced force is applied to an object it produces an acceleration in the object in its own direction. So, the two forces acting on this box are the frictional force and the applied force in horizontal direction. In order to move the box at constant speed, the applied force must first, overcome the frictional force, so the object can start its motion. Since, the motion has constant velocity, it means no acceleration. So, the force must be balanced in order to avoid acceleration as a consequence of Newton's Second Law of motion. Therefore, the correction in this case will be:
<u>A. The applied force should be the same size as the friction force</u>