Answer:
2s
Explanation:
Given parameters:
Distance = 30m
Speed = 15m/s
Unknown:
Time before Laurence caught it = ?
Solution:
To solve this problem;
Speed =
Time taken =
=
= 2s
The time it takes is 2s
If it is s-t graph , point is c
if it is v-t graph , point is e
Answer:
a
The height is 
b
The horizontal distance is 
Explanation:
From the question we are told that
The speed is 
The angle is 
The height of the cannon from the ground is h = 2 m
The distance of the net from the ground is k = 1 m
Generally the maximum height she reaches is mathematically represented as

=> ![H = \frac{(15)^2 [sin (40)]^2 }{2 * 9.8} + 2](https://tex.z-dn.net/?f=H%20%20%3D%20%20%5Cfrac%7B%2815%29%5E2%20%5Bsin%20%2840%29%5D%5E2%20%7D%7B2%20%2A%209.8%7D%20%20%2B%20%202)
=> 
Generally from kinematic equation

Here s is the displacement which is mathematically represented as
s = [-(h-k)]
=> s = -(2-1)
=> s = -1 m
There reason why s = -1 m is because upward motion canceled the downward motion remaining only the distance of the net from the ground which was covered during the first half but not covered during the second half
a = -g = -9.8

So

=> 
using quadratic formula to solve the equation we have

Generally distance covered along the horizontal is

=> 
=> 
Answer:
y = 17,89 m
Explanation:
Let us fixate the reference point in top of the building, from where the watermelon is thrown down. We will assume also that the positive axis of our system points up. We describe the watermelon’s motion with the equation:

Clearing the equation so we isolate y we have that:

Making a substitution with the values from the statement we have:
]
So, this skyscraper is about 17,89 m tall; which is not very tall for a skyscraper but who am I to judge. 17,89 m is also the displacement of the watermelon from the point it was thrown down.
I hope everything was clear with my explanation. If I can help with anything else, just let me know. Have an awesome day :D
Answer:
8.2 m/s upward
Explanation:
The motion of the ball is a free fall motion, so we can use the suvat equation:

where:
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
Choosing upward as positive direction:

(acceleration of gravity)
t = 1.5 s
Solving for u, we find the initial velocity:

And the direction is upward.