Answer:
A ball is thrown at an initial height of 5 feet with an initial upward velocity at 29 ft/s. lets assume that balls height h (in feet) after t seconds is give by:
<u>h= 5 + 29t -16t^2</u>
Explanation:
h= 5 + 29t -16t^2
a time when the ball's height will be 17 ft
17 = 5 + 29t -16t2
0 = -17 + 5 + 29t -16t2
0 = -12 + 29t - 16t2
Using the quadratic equation:
t = (-29±√(292-(4*(-16)*(-12))))÷2(-16)
= (-29±√(841 - 768))÷(-32)
= (-29±√(73))÷(-32)
= (-29 + 8.544)÷(-32) or (-29 - 8.544)÷(-32)
= (-20.456)÷(-32) or -37.544÷(-32)
= 0.64 or 1.17
So, the ball is at a height of 17 ft twice: once on the way up after 0.64 seconds and once on the way back down after 1.17 seconds.
Answer:
no way to tell since the ocean surface is moving too violently it's not possible to determine the reflected angle
Answer:
(a) 
(b)
Explanation:
It is given that,
Force acting on the particle, F = 12 N
Displacement of the particle, 
Magnitude of displacement, 
(a) If the change in the kinetic energy of the particle is +30 J. The work done by the particle is given by :

is the angle between force and the displacement
According to work energy theorem, the charge in kinetic energy of the particle is equal to the work done.
So,



(b) If the change in the kinetic energy of the particle is (-30) J. The work done by the particle is given by :


Hence, this is the required solution.
Answer:
Elements in the same period have the same number of electron shells; moving across a period (so progressing from group to group), elements gain electrons and protons and become less metallic. This arrangement reflects the periodic recurrence of similar properties as the atomic number increases.
Explanation:
The Periodic Table can predict the properties of new elements, because it organizes the elements according to their atomic numbers. ... They hope that the two nuclei at the centre of these atoms will fuse and form a heavier nucleus. When these heavy elements form, they are usually highly unstable.