In a stationary situation, the weight of person is

This is the weight "felt" by the scale, which is basically the normal reaction applied by the scale on the person, and which uses the value of g (9.81) as reference to convert the weight (602.8 N) into a mass (62 kg).
When the person is in the elevator, the scale says 77 kg. The scale is still using the same value of conversion (9.81), so the apparent weight "felt" by the scale is

This is the normal reaction applied by the scale on the person, and which is directed upward. Besides this force, there is still the weight W of the person, acting downward. So, if we use Newton's second law:


where a is the acceleration of the elevator. If we solve for a, we find

The negative sign means the acceleration is in the opposite direction of g (which we take positive), so it means the elevator is going upward.
Permanent magnet. An induced magnet would be created when a piece of iron (for example) is in contact with a magnet. Temporary magnets would be something like an electromagnet. Bar magnets are permanently magnetic unless we heat them or hammer them to cause their domains to loose alignment.
D) waves are used to transmit the rail signal though the air. these waves are encoded at different frequencies for different stations
Answer:
v = 384km/min
Explanation:
In order to calculate the speed of the Hubble space telescope, you first calculate the distance that Hubble travels for one orbit.
You know that 37000 times the orbit of Hubble are 1,280,000,000 km. Then, for one orbit you have:

You know that one orbit is completed by Hubble on 90 min. You use the following formula to calculate the speed:

hence, the speed of the Hubble is approximately 384km/min
Answer:
Xin lỗi, ở đây không có ai nói tiếng Việt, nhưng bạn có thể cuộn hết cỡ xuống dưới để tìm một trang web cho não biết nói tiếng Việt
Explanation: