Answer:
P-block metals have classic metal characteristics like they are shiny, they are good conductors of heat and electricity, and they lose electrons easily. These metals have high melting points and readily react with nonmetals to form ionic compounds.
Explanation:
¿ cuál es la pregunta que intentas hacer?
Answer:
0.1035 M
Explanation:
Considering:
Sodium chloride will furnish Sodium ions as:
Given :
For Sodium chloride :
Molarity = 0.288 M
Volume = 3.58 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 3.58×10⁻³ L
Thus, moles of Sodium furnished by Sodium chloride is same the moles of Sodium chloride as shown below:
Moles of sodium ions by sodium chloride = 0.00103104 moles
Sodium sulfate will furnish Sodium ions as:
Given :
For Sodium sulfate :
Molarity = 0.001 M
Volume = 6.51 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 6.51 ×10⁻³ L
Thus, moles of Sodium furnished by Sodium sulfate is twice the moles of Sodium sulfate as shown below:
Moles of sodium ions by Sodium sulfate = 0.00001302 moles
Total moles = 0.00103104 moles + 0.00001302 moles = 0.00104406 moles
Total volume = 3.58 ×10⁻³ L + 6.51 ×10⁻³ L = 10.09 ×10⁻³ L
Concentration of sodium ions is:
<u>
The final concentration of sodium anion = 0.1035 M</u>
Answer:
The two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place
Explanation:
A complex is made up a central metal atom or ion and ligands. Ligands are lewis bases and they possess lone pairs of electrons. A complex is formed when electrons are donated from ligand species to metals.
However, if the ligand has a negative charge at a particular location and we try to put electrons from the metal near the electrons from the ligand, the two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place.
The water molecules are moving so slow that they end up sticking together to form a solid