H2O (water) has 2 hydrogen atoms and 1 oxygen atom.
Bonds formed between atoms can be classified as ionic and covalent
Ionic bonds are formed between atoms that have a high difference in the electronegativity values.
In contrast, bonds formed between atoms that have a difference in electronegativity lower than the ionic counterparts are polar covalent bonds. If the atoms have very similar electronegativities, they form non-polar covalent bonds.
In H2S, the S atom is bonded to 2 H atoms. The electronegativity of H = 2.2 and S= 2.56. Since the difference is not high the bond formed will be covalent (polar covalent).
Answer:
Oceanic & Continental Plates
The oceanic plate is denser and sinks due to its lower buoyancy. It's sucked into the asthenosphere and is melted deeper into the Earth, called a subduction zone. The continental plate is less dense and floats over the top of it since it is more buoyant
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
Answer:
D.
Explanation:
D is the correct answer because, in aqueous solution, solvent is water and solute (in this example carbon dioxide CO₂) is a substance dissolved in water. The amount of solute that can be dissolved in a solvent depends of chemical composition, temperature and pressure