Answer:
0.1593 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 600 torr/760 = 0.789 atm, V₁ = 185.0 mL = 0.185 L, T₁ = 25.0°C + 273 = 298.0 K.
P₂ (at STP) = 1.0 atm, V₂ = ??? L, T₂ (at STP = 0.0°C) = 0.0°C + 273 = 273.0 K.
<em>∴ V₂ = P₁V₁T₂/P₂T₁</em> = (0.789 atm)(0.185 mL)(298.0 K)/(1.0 atm)(273.0 K) = <em>0.1593 L.</em>
There are many properties to substances.
I'll list some examples below:
- Mass
- Volume
- Density
- Conductivity
- Malleability
- Boiling point
- Melting point
- Heat capacity
Hope this helps! :3
A. They are the most destructive earthquake waves.
D. They can move in a rolling pattern through rock, like an ocean wave.
Explanation:
Surface waves are seismic waves that cause the most destruction during an earthquake.
Rayleigh waves are known to cause rolling pattern of rocks just like an ocean waves.
- Seismic waves are elastic waves that notably transmits energy.
- They usually accompany earthquakes.
- There are two broad categories of these waves.
- Surface and body waves.
- Seismic surface waves are low frequency and long wavelength waves.
- They travel very close to the surface.
- They are made up of Love and Rayleigh waves.
- Love waves travels laterally in a horizontal fashion.
- Rayleigh waves rolls like ocean waves in the ground.
- The bulk of the destruction caused during an earthquakes is due to these waves.
- They are the last waves to arrive a seismic station
learn more:
Seismograph brainly.com/question/11292835
#learnwithBrainly