Compounds of hydrogen exhibit a relatively large kinetic isotope effect.
The phenomenon known as the kinetic isotope effect (KIE) is brought on by the variable reaction speeds that are displayed by isotopically substituted compounds. When it comes to studying reaction kinetics, mechanisms, and solvent effects, isotope effects like KIEs are invaluable tools in both physical and biological sciences.
The phenomenon known as the kinetic isotope effect (KIE) is brought on by the variable reaction speeds that are displayed by isotopically substituted compounds. When it comes to studying reaction kinetics, mechanisms, and solvent effects, isotope effects like KIEs are invaluable tools in both physical and biological sciences. The replacement of hydrogen with deuterium is a highly frequent isotope substitution. The ratio kH/kD, which describes this as a "deuterium effect," is used to measure it. Due to the proportion, significant effects are observed.
Learn more about kinetic isotope effect here:
brainly.com/question/20388488
#SPJ4
The geometry of the double bond is almost always a cis configuration in natural fatty acids<span>. These molecules </span>do<span> not "stack" very well. The intermolecular interactions are much weaker than </span>saturated <span>molecules. As a result, the melting </span>points<span> are much </span>lower<span> for </span>unsaturated fatty acids<span>.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
Explanation:
1 mol of ideal gas at STP occupies 22.4 (or 22.7 depending on the convention being used for STP) liters in volume. I will use 22.4 so 17.88*22.4 = 400.5 L
Answer with Explanation:
"Mass" and "weight" should never be used interchangeably with each other. Mass refers to the <u>total amount of matter</u><u> that can be measured in an object, </u>while weight refers to the<u> measure of the</u><u> force of gravity</u><u> that is acting on the object's mass.</u>
The mass of an object is<u> constant</u> (meaning, it doesn't change even if the object will be placed on another location) while the weight of an object relies on the <em>force of gravity.</em> So, this means that your mass on Earth and on the moon are identical, however, your weight on Earth and on the Moon are different. You will weigh lesser on the Moon because it has a lesser surface gravity than that of Earth.
So, this explains the answer.