the answer your looking for is Optical instrument.
Time = 25s
speed = 10m/min
= 10m / 60
= (1/6)m/s
distance = speed × time
= 25 × (1/6)
=4.167m
Use the formula below for this question:

re-arrange to solve for a:

now simply plug in your variables and there's your answer :). If you ever get stuck, you can look up the kinematic equations!
All machines are not 100% efficient because of <span>C. Friction</span>
Answer:
a) u = 30.29 m/s
b) t = 2.09 s
Explanation:
given,
velocity = 45 m/s
angle (θ) = 50°
horizontal velocity = 45 cos 50°
time taken to reach 150 m.
times = 
t = 5.19 s
a) height of arrow



s = 46.78 m
v² - u² = 2 g s
u² = 2 × 9.81 × 46.78
u = 30.29 m/s
b) time taken by the apple = 
= 3.09 s
time after which it has to be thrown = 5.19-3.09 = 2.1 s