Using the factor theorem, it is found that the polynomial is:

Given by the first option
---------------------------
Given a polynomial f(x), this polynomial has roots
using the factor theorem it can be written as:
, in which a is the leading coefficient.
---------------------------
In this question:



- By the options, leading coefficient

Thus:



Which is the polynomial.
A similar problem is given that: brainly.com/question/4786502
Answer:
First answer is 1200
Second answer is 900 for each new employee
Step-by-step explanation:
First answer:
2200+1300+800+940+560+x = 7000
5800+x = 7000 subtract 5800 from both sides and you get your answer
x = 1200
Second answer:
x = 900. Each of the two employees made 900 a month or 1800 a month for both of them.
To find the average we take the total salaries and divide by the number of people to find the average salary. In this case, we know the average and we know all of the salaries, but two. We can figure this out.
(7000 + 2x)/8 = 1100 multiple both sides by 8 to clear the fraction/
7000 +2x = 8800 Subtract both sides by 7000
2x = 1800 Divide both sides by 2
x = 900
Answer:
t≈8.0927
Step-by-step explanation:
h(t) = -16t^2 + 128t +12
We want to find when h(t) is zero ( or when it hits the ground)
0 = -16t^2 + 128t +12
Completing the square
Subtract 12 from each side
-12 = -16t^2 + 128t
Divide each side by -16
-12/-16 = -16/-16t^2 + 128/-16t
3/4 = t^2 -8t
Take the coefficient of t and divide it by 8
-8/2 = -4
Then square it
(-4) ^2 = 16
Add 16 to each side
16+3/4 = t^2 -8t+16
64/4 + 3/4= (t-4)^2
67/4 = (t-4)^2
Take the square root of each side
±sqrt(67/4) =sqrt( (t-4)^2)
±1/2sqrt(67) = (t-4)
Add 4 to each side
4 ±1/2sqrt(67) = t
The approximate values for t are
t≈-0.092676
t≈8.0927
The first is before the rocket is launched so the only valid answer is the second one
Let P(a, b) be a point on the coordinate plane. Then the following hold:
i) If a>0, b>0 then P is in the I.Quadrant.
ii) If a<0, b>0 then P is in the II.Quadrant.
iii) If a<0, b<0 then P is in the III.Quadrant.
iv) If a>0, b<0 then P is in the IV.Quadrant.
v) If a=0 and b is positive or negative, then P is on the y-axis.
vi) If b=0 and a is positive or negative, then P is on the x-axis.
Since we have: a=0, and 19 positive, then this point is on the y-axis.
Answer: y-axis