1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
4 years ago
8

Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the M

ach number at the exit is 0.3, determine the direction and the rate of heat transfer. For the same conditions at the inlet, determine the amount of heat that must be transferred to the system if the flow is to be sonic at the exit of the duct.

Engineering
1 answer:
Naddika [18.5K]4 years ago
7 0

Answer:

a. 318.2k

b. 45.2kj

Explanation:

Heat transfer rate to an object is equal to the thermal conductivity of the material the object is made from, multiplied by the surface area in contact, multiplied by the difference in temperature between the two objects, divided by the thickness of the material.

See attachment for detailed analysis

You might be interested in
If you were to plot the voltage versus the current for a given circuit, what would you expect the slope of the line to be? If no
Brut [27]

Answer:

Part 1: It would be a straight line, current will be directly proportional to the voltage.

Part 2: The current would taper off and will have negligible increase after the voltage  reaches a certain  value. Graph attached.

Explanation:

For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.

V=I*R

where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.

In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.

7 0
4 years ago
The ???? − i relationship for an electromagnetic system is given by ???? = 1.2i1/2 g where g is the air-gap length. For current
Artemon [7]

Answer:

a) The mechanical force is -226.2 N

b) Using the coenergy the mechanical force is -226.2 N

Explanation:

a) Energy of the system:

\lambda =\frac{1.2*i^{1/2} }{g} \\i=(\frac{\lambda g}{1.2} )^{2}

\frac{\delta w_{f} }{\delta g} =\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }

f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }

If i = 2A and g = 10 cm

\lambda =\frac{1.2*i^{1/2} }{g} =\frac{1.2*2^{1/2} }{10x10^{-2} } =16.97

f_{m}=-\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }=-\frac{16.97^{3}*2*0.1 }{3*1.2^{2} } =-226.2N

b) Using the coenergy of the system:

f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{1.2*2*i^{3/2}  }{3*g^{2} }=-\frac{1.2*2*2^{3/2} }{3*0.1^{2} } =-226.2N

8 0
3 years ago
the tire restraining device or barrier shall be removed immediately from service for any of these defects except
lora16 [44]

Restraining devices and barriers shall be visually inspected on the rim wheel components or sudden release of contained air.

Restraining device means an apparatus such as a <em>cage, rack, assemblage of bars and other components</em> that will constrain all rim wheel components.

Restraining devices and barriers shall be visually inspected on the rim wheel components or sudden release of contained air. Any restraining device or barrier exhibiting damage such as the following defects shall be immediately removed from service.

Find out more on Restraining devices at: brainly.com/question/24647450

5 0
2 years ago
The given family of functions is the general solution of the differential equation on the indicated interval.Find a member of th
Alja [10]

Answer:

Explanation:

y'''+y=0---(i)

General solution

y=c_1e^o^x+c_2\cos x +c_3 \sin x\\\\\Rightarrow y=c_1+c_2 \cos x+c_3 \sin x---(ii)\\\\y(\pi)=0\\\\\Rightarrow 0=c_1+c_2\cos (\pi)+c_3\sin (\pi)\\\\\Rightarrow c_1-c_2=0\\\\c_1=c_2---(iii)

y'=-c_2\cos x+c_3\cosx\\\\y'(\pi)=2\\\\\Rightarrow2=-c_2\sin(\pi)+c_3\cos(\pi)\\\\\Rightarrow-c_2(0)+c_3(-1)=2\\\\\Rightarrow c_3=-2\\\\y''-c_2\cos x -c_3\sin x\\\\y''(\pi)=-1\\\\\Rightarrow-1=-c_2 \cos (\pi)=c_3\sin(\pi)\\\\\Rightarrow-1=c_2-0\\\\\Rightarrow c_2=-1

in equation (iii)

c_1=c_2=-1

Therefore,

\large\boxed{y=-1-\cos x-2\sin x}

5 0
4 years ago
A wire of diameter d is stretched along the centerline of a pipe of diameter D. For a given pressure drop per unit length of pip
JulsSmile [24]

Answer:

Part A: (d/D=0.1)

DeltaV percent=42.6%

Part B:(d/D=0.01)

DeltaV percent=21.7%

Explanation:

We are going to use the following volume flow rate equation:

DeltaV=\frac{\pi * DeltaP}{8*u*l}(R^{4}-r^{4} -\frac{(R^{2}-r^{2})}{ln\frac{R}{r}}^{2})

Above equation can be written as:

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(\frac{r}{R} )^{4}+\frac{(1-(\frac{r}{R} )^{2})}{ln\frac{r}{R}}^{2})

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(\frac{d}{D} )^{4}+\frac{(1-(\frac{d}{D})^{2})}{ln\frac{d}{D}}^{2})

First Consider no wire i.e d/D=0

Above expression will become:

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(0)^{4}+\frac{(1-(0)^{2})}{ln0}^{2})

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}

Part A: (d/D=0.1)

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(0.1)^{4}+\frac{(1-(0.1)^{2})}{ln0.1}^{2})

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}*0.574

DeltaV percent=\frac{(\frac{\pi*R^{4}*DeltaP}{8*u*l})-\frac{\pi *R^{4}*DeltaP}{8*u*l}*0.574}{\frac{\pi*R^{4}*DeltaP}{8*u*l} }*100

DeltaV percent=\frac{1-0.574}{1}*100

DeltaV percent=42.6%

Part B:(d/D=0.01)

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}(1-(0.01)^{4}+\frac{(1-(0.01 )^{2})}{ln0.01}^{2})

DeltaV=\frac{\pi*R^{4}*DeltaP}{8*u*l}*0.783

DeltaV percent=\frac{(\frac{\pi *R^{4}*DeltaP}{8*u*l})-\frac{\pi *R^{4}*DeltaP}{8*u*l}*0.783}{\frac{\pi *R^{4}*DeltaP}{8*u*l} }*100

DeltaV percent=\frac{1-0.783}{1}*100

DeltaV percent=21.7%

5 0
3 years ago
Other questions:
  • an existing highway-railway at-grade crossing is being redesigned as grade separated to improve traffic operations. The railway
    8·1 answer
  • Determine F12 and F21 for the following configurations: (a) A long semicircular duct with diameter of 0.1 meters: (b) A hemisphe
    10·1 answer
  • Which of the following is an example of seeking accreditation?
    7·1 answer
  • Free ideas free points. You will be reported for answering "no" or I don't know
    11·1 answer
  • A structural component in the shape of a flat plate 29.6 mm thick is to be fabricated from a metal alloy for which the yield str
    11·1 answer
  • A long corridor has a single light bulb and two doors with light switch at each door.
    12·1 answer
  • Traffic at a roundabout moves
    8·1 answer
  • In c the square root of a number N can be approximated by repeated calculation using the formula NG = 0.5(LG + N/LG) where NG st
    14·1 answer
  • Can someone please help me with this. Thank you. Ill mark you as brainly.
    11·1 answer
  • What is the best way to collaborate with your team when publishing Instagram Stories from Hootsuite?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!