Answer:
Modulus of resilience will be 
Explanation:
We have given yield strength 
Elastic modulus E = 104 GPa
We have to find the modulus
Modulus of resilience is given by
Modulus of resilience
, here
is yield strength and E is elastic modulus
Modulus of resilience
The drawbar or other connections must be strong enough to pull all the weight of the vehicle being towed. The drawbar or other connection may not exceed 15 feet from one vehicle to the other.
Answer:
8 to 10 times
Explanation:
For dry road
u= 15 mph ( 1 mph = 0.44 m/s)
u= 6.7 m/s
Let take coefficient of friction( μ) of dry road is 0.7
So the de acceleration a = μ g
a= 0.7 x 10 m/s ² ( g=10 m/s ²)
a= 7 m/s ²
We know that
v= u - a t
Final speed ,v=0
0 = 6.7 - 7 x t
t= 0.95 s
For snow road
μ = 0.4
de acceleration a = μ g
a = 0.4 x 10 = 4 m/s ²
u= 30 mph= 13.41 m/s
v= u - a t
Final speed ,v=0
0 = 30 - 4 x t'
t'=7.5 s
t'=7.8 t
We can say that it will take 8 to 10 times more time as compare to dry road for stopping the vehicle.
8 to 10 times
Answer:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Explanation:
Calculation to estimate the upper and lower bounds of the modulus of this composite.
First step is to calculate the maximum modulus for the combined material using this formula
Modulus of Elasticity for mixture
E= EcuVcu+EwVw
Let pug in the formula
E =( 110 x 0.40)+ (407 x 0.60)
E=44+244.2 GPa
E=288.2GPa
Second step is to calculate the combined specific gravity using this formula
p= pcuVcu+pwTw
Let plug in the formula
p = (19.3 x 0.40) + (8.9 x 0.60)
p=7.72+5.34
p=13.06
Now let calculate the UPPER BOUNDS and the LOWER BOUNDS of the Specific stiffness
UPPER BOUNDS
Using this formula
Upper bounds=E/p
Let plug in the formula
Upper bounds=288.2/13.06
Upper bounds=22.07 GPa
LOWER BOUNDS
Using this formula
Lower bounds=EcuVcu/pcu+EwVw/pw
Let plug in the formula
Lower bounds =( 110 x 0.40)/8.9+ (407 x 0.60)/19.3
Lower bounds=(44/8.9)+(244.2/19.3)
Lower bounds=4.94+12.65
Lower bounds=17.59 GPa
Therefore the Estimated upper and lower bounds of the modulus of this composite will be:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Answer:
Technician A
Explanation:
Galvanic corrosion is not on only one metal alone but caused when two metals are interacting. Thus, Duplicating the original installation method is a better option because re-using a coated bolt doesn't prevent galvanic corrosion because both materials must be coated and not just the bolt and in technician B's case he is coating just the bolt. Thus, technician B's method will not achieve prevention of galvanic corrosion but technician A's method will achieve it.