Less, if it’s too big: hard to control and maneuverability for shooting wouldn’t be that good. a smaller wheelchair allows for faster movement and control, along with easier shooting and upper body movement
A series of concrete pillars have been built on the border between Kuwait and Iraq. They are there to demarcate the border.
<h3>What is a
border?</h3>
A border is a geographical boundary that separate<em> countries, states, provinces, counties, cities, and towns.</em>
A series of concrete pillars have been built on the border between Kuwait and Iraq. They are there to demarcate the border.
Find out more on border at: brainly.com/question/811755
The question is incomplete. The complete question is :
The solid rod shown is fixed to a wall, and a torque T = 85N?m is applied to the end of the rod. The diameter of the rod is 46mm .
When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the strains vary linearly along radial lines. Within the proportional limit, the stress also varies linearly along radial lines. If point A is located 12 mm from the center of the rod, what is the magnitude of the shear stress at that point?
Solution :
Given data :
Diameter of the rod : 46 mm
Torque, T = 85 Nm
The polar moment of inertia of the shaft is given by :


J = 207.6 
So the shear stress at point A is :



Therefore, the magnitude of the shear stress at point A is 4913.29 MPa.
Answer:Science is the body of knowledge that explores the physical and natural world. Engineering is the application of knowledge in order to design, build and maintain a product or a process
Explanation:
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:
