Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Answer:
I feel like to demonstrate you would use an elastic band as the material. You obviously have to put force in order to see how far it stretches. From this you can also find about its resistance and durability
Also you have to make sure the distance between the two hands are equal as you want an accurate result.
Answer:
A = 4.6 [m²]
Explanation:
The area of a circle can be calculated by means of the following equation.

where:
A = area [m²]
D = diameter = 2.42 [m]
Now replacing:
![A=\frac{\pi }{4} *(2.42)^{2} \\A = 4.6 [m^{2} ]](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%2A%282.42%29%5E%7B2%7D%20%5C%5CA%20%3D%204.6%20%5Bm%5E%7B2%7D%20%5D)
Very simple,Its all about calculating distance using the formula:
D = V x T
where,
V is the speed or velocity
D is distance
T is the time
In the given problem,there are two parts.
Lets do the calculations for both parts separately:
Part 1) Before the rain
Time = 130/95
= 1.37 hours <span> </span>
<span>Time taken after the rain = Total time - time taken before the rain </span>
<span> = 3.34 hours - 1.37 hours
= 1.97 hours </span>
<span>Distance covered after the rain = 1.97 hours x 65 km/h
= 128 km</span>
Hence,
<span>a) The total distance covered = 130 + 128
= 258 km
</span><span>b) Average speed = Total distance/Total time
= 260/3.34
= 78 km/h </span>
While Jane is running has a kinetic energy, which is Ek = 1/2*m*v^2 where m is mass and v is velocity When she grabs a vine, she is going to change the kinetic energy to potential energy.
We know that potential energy is given by Ep = m*g*h where m is mass, g is gravity constant and h is height
So while running the kinetic energy is Ek = 1/2 * m * 5.2^2 = 13.52*m
Then all that energy is used to swing upward and gain potential energy
Ep = m*g*h = Ek = 13.52*m
m*9.8*h = 13.52*m
h = 13.52/9.8 = 1.38 meters
So Jane will swing 1.38 meters upward