Answer:
The simplified form of the given expression is 
Step-by-step explanation:
Here, the given expression is:

Now to simplify the given expression, perform operations on LIKE TERMS:
We get:
![-3 + (\frac{2}{3}) y - 4 - (\frac{1}{3})y =( -3 - 4) + [(\frac{2}{3}) y- (\frac{1}{3})y]\\= - 7 + [(\frac{2}{3}) -(\frac{1}{3})]y = -7 + [\frac{2-1}{3}]y\\ = -7 + (\frac{1}{3})y\\ \implies -3 + (\frac{2}{3}) y - 4 - (\frac{1}{3})y = -7 + (\frac{1}{3})y](https://tex.z-dn.net/?f=-3%20%2B%20%28%5Cfrac%7B2%7D%7B3%7D%29%20y%20-%204%20-%20%28%5Cfrac%7B1%7D%7B3%7D%29y%20%20%3D%28%20-3%20%20-%204%29%20%20%2B%20%5B%28%5Cfrac%7B2%7D%7B3%7D%29%20y-%20%28%5Cfrac%7B1%7D%7B3%7D%29y%5D%5C%5C%3D%20-%207%20%20%2B%20%5B%28%5Cfrac%7B2%7D%7B3%7D%29%20-%28%5Cfrac%7B1%7D%7B3%7D%29%5Dy%20%20%3D%20-7%20%2B%20%5B%5Cfrac%7B2-1%7D%7B3%7D%5Dy%5C%5C%20%3D%20-7%20%2B%20%28%5Cfrac%7B1%7D%7B3%7D%29y%5C%5C%20%5Cimplies%20-3%20%2B%20%28%5Cfrac%7B2%7D%7B3%7D%29%20y%20-%204%20-%20%28%5Cfrac%7B1%7D%7B3%7D%29y%20%3D%20%20%20-7%20%2B%20%28%5Cfrac%7B1%7D%7B3%7D%29y)
Hence the simplified form of the given expression is 
Answer: VIICCCXLVII
Don’t forget to mark me brainliest :)
Initial velocity (u) = 0m/s
Final velocity (v) = 20m/s
Time (t) = 10 s
Acceleration (a)
= (v - u)/t
= [(20m/s) - (0m/s)]/10s
= (20m/s)/10s
= (20m/s²)/10
=> 2m/s²
A) Find KM∠KEM is a right angle hence ΔKEM is a right angled triangle Using Pythogoras' theorem where the square of hypotenuse is equal to the sum of the squares of the adjacent sides we can answer the
KM² = KE² + ME²KM² = 8² + (3√5)² = 64 + 9x5KM = √109KM = 10.44
b)Find LMThe ratio of LM:KN is 3:5 hence if we take the length of one unit as xlength of LM is 3xand the length of KN is 5x ∠K and ∠N are equal making it a isosceles trapezoid. A line from L that cuts KN perpendicularly at D makes KE = DN
KN = LM + 2x 2x = KE + DN2x = 8+8x = 8LM = 3x = 3*8 = 24
c)Find KN Since ∠K and ∠N are equal, when we take the 2 triangles KEM and LDN, they both have the same height ME = LD.
∠K = ∠N Hence KE = DN the distance ED = LMhence KN = KE + ED + DN since ED = LM = 24and KE + DN = 16KN = 16 + 24 = 40
d)Find area KLMNArea of trapezium can be calculated using the formula below Area = 1/2 x perpendicular height between parallel lines x (sum of the parallel sides)substituting values into the general equationArea = 1/2 * ME * (KN+ LM) = 1/2 * 3√5 * (40 + 24) = 1/2 * 3√5 * 64 = 3 x 2.23 * 32 = 214.66 units²
The final probability is the weighted average of the playing probabilities calculated over the possible weather options:
P(john practices cello; given that it rains) * P(it rains) +
P(john practices cello; given that it does not rain) * P(it does not rain) =
0.6 * 0.7 + 0.4 * 0.3 = 0.54
The probability is 54%