Numbers on the left of zero are negative. Number lines go from smallest to greatest.
Short-duration spacecraft typically have one backup system and carry their own supply of oxygen. A large portion of the required oxygen is produced on long-duration missions, such as the International Space Station (ISS), which has been in orbit since 1998. Different sources provide the oxygen utilized on the ISS. The water electrolyzer is the primary source of metabolic oxygen. As an alternative to the electrolyzer, oxygen candles (also known as SFOGs) can produce metabolic oxygen. Additionally, oxygen is carried up whenever a cargo ship docks and stored in two tanks on the ISS Airlock. The electrolyzer electrolyzes water to create oxygen by running an electric current through it. Since water is a poor electrical conductor by itself, a little quantity of common salt is dissolved in the water to improve its electrical conductivity. Water is split into hydrogen and oxygen throughout the process.
We must keep in mind that oxygen by itself cannot be inhaled; it must be combined in the proper ratio with nitrogen to make it breathable. Two tanks aboard the ISS are used to store nitrogen, and the cargo ships that travel by from time to time also transport nitrogen cylinders. Through the electrical grid of the station, the solar panels on the station supply the necessary electricity for the oxygen generators. The majority of the required water is transported to the station by cargo supply ships. Condensers, which draw water vapor even from the station's air, ensure that not a drop of water is wasted. Using the proper equipment, water is also recycled from the astronauts' urine.
Through a suitable vent, the hydrogen gas produced during the electrolysis process is released into space. Pressurized tanks at the airlock nodes at the space station are pumped with oxygen when the cargo vehicles arrive there. Pressurized tanks there are also pumped with nitrogen. It goes without saying that the station's atmospheric controls combine the gases in the right amounts for the atmosphere of Earth and then distribute the combination throughout the cabin. The production of oxygen in space is impossible.
Answer:
q = 2,95 10-6 C
Explanation:
The magnetic force on a particle is described by the equation
F = q v x B
Where bold indicate vectors
Let's make the vector product
vxB =
v x B = 1.20 106 [i ^ (4 0.130) - j ^ (3 0.130)]
vx B = 1.20 106 [0.52 i ^ - 0.39j ^]
As they give us the force module, let's use Pythagoras' theorem,
|v xB | =1.20 10⁶ √( 0.52² + 0.39²)
|v x B| = 1.20 10⁶ 0.65
v xB = 0.78 10⁶
Let's replace and calculate
2.30 = q 0.78 10⁶
q = 2.3 / 0.78 106
q = 2,95 10-6 C
Well, first off, mechanical energy is the sum of kinetic and potential energy in an object that is used to do work. In other words, it is energy in an object due to its motion or position, or both. Heat energy is the result of the movement of tiny particles called atoms, molecules or ions in solids, liquids and gases. Light energy is the only form of energy that we can actually see directly. It is formed through chemical, radiation, and mechanical means. Striking a match stick (mechanical energy) creates fire, which has a ton of heat energy, and produces light too, so the answer, is A. I hope i could help!
Answer:
The horizontal speed of a projectile is constant for the duration of its flight. This is because, once launched, there are no horizontal forces acting on the projectile (air resistance is usually ignored because it is very small) so horizontally the projectile will travel at a constant speed. For any calculations involving the projectile's horizontal motion, we use
distance=speed×time
d=vt