Did you know that hormones are produced and they are released by glands?
The equation relevant to this is:
S(t) = So + Vot - At²/2 <span>
</span>
<span>Therefore
we can create two equations:
<span>S(t) = 90 = So - 4t - 16.1t² -->
eqtn 1</span>
<span>S(t+2) = 10 = So - 4(t+2) - 16.1(t+2)² --> eqtn 2</span>
</span>
<span>Expanding
eqtn 2:
10 = So - 4t - 8 - 16.1(t² + 4t + 4)
10 = So - 4t - 8 - 16.1t² - 64.4t - 64.4
10 + 8 + 64.4 = So - 68.4t - 16.1t²
<span>82.4 = So - 68.4t - 16.1t² -->
eqtn 3</span></span>
<span>
Subtracting eqtn 1 by eqtn 3:</span>
90 = So - 4t - 16.1t²
82.4 = So - 68.4t - 16.1t²
=> 7.6 = 64.4t
t = 0.118 s
Therefore calculating for initial height So:<span>
<span>82.4 = So - 68.4(0.118) - 16.1(0.118)²
<span>So = 90.7 ft</span></span></span>
To solve the exercise it is necessary to apply the concepts given in Newton's second law and the equations of motion description.
Let's start by defining acceleration based on speed and time, that is

On the other hand according to Newton's second law we have to
F=ma
where
m= Mass
a = Acceleration
Replacing the value of acceleration in this equation we have

Substituting with our values we have

Re-arrange to find v


Therefore the speed of the glider is 2m/s
Answer:
Part A: 
Part B: 
Part C: 
Explanation:
Part A:
We will use the following kinematics equation:

Part B:
We will use the same kinematics equation:

Part C:
The total time takes is 2t.
So the train moves a distance of

And the car moves a distance in Part A and in Part B:

So the total distance that the car traveled is 
The difference between the train and the car is

Answer:
Watershed should be your answer!