Answer:
the equator is closer to the sun
The initial temperature of the copper metal was 27.38 degrees.
Explanation:
Data given:
mass of the copper metal sample = 215 gram
mass of water = 26.6 grams
Initial temperature of water = 22.22 Degrees
Final temperature of water = 24.44 degrees
Specific heat capacity of water = 0.385 J/g°C
initial temperature of copper material , Ti=?
specific heat capacity of water = 4.186 joule/gram °C
from the principle of:
heat lost = heat gained
heat gained by water is given by:
q water = mcΔT
Putting the values in the equation:
qwater = 26.6 x 4.186 x (2.22)
qwater = 247.19 J
qcopper = 215 x 0.385 x (Ti-24.4)
= 82.77Ti - 2019.71
Now heat lost by metal = heat gained by water
82.77Ti - 2019.71 = 247.19
Ti = 27.38 degrees
Answer:
There is 52.33 grams of water produced.
Explanation:
Step 1: Data given
Mass of propane burned = 32.00 grams
Molar mass of propane = 44.1 g/mol
Oxygen is in excess
Molar mass of water = 18.02 g/mol
Step 2: The balanced equation
C3H8 + 5O2 → 4H2O + 3CO2
Step 3: Calculate moles of propane
Moles of propane = mass propane / molar mass of propane
Moles of propane = 32.00 grams / 44.1 g/mol
Moles of propane = 0.726 moles
Step 4: Calculate moles of H2O
Propane is the limiting reactant.
For 1 mol of propane consumed, we need 5 moles of O2 to produce 4 moles of H2O and 3 moles of CO2
For 0.726 moles of propane we'll have 4*0.726 = 2.904 moles of H2O
Step 5: Calculate mass of H2O
Mass of H2O = moles of H2O * molar mass of H2O
Mass of H2O = 2.904 moles * 18.02 g/mol
Mass of H2O = 52.33 grams
There is 52.33 grams of water produced.
Answer:
This is because an increase in temperature increases the movement of molecules/particles of reactants which encourages collision and subsequently, reaction.