Answer:
O2 is a covalent substance while NaCl is an ionic substance
Explanation:
In O2 molecule, the bond is between 2 oxygen atoms which are non - metals. Thus, this is a covalent bond since it involves 2 non metals.
Whereas, for the NaCl molecule, the bond is between a metal sodium (Na) and a non metal Chloride(Cl) and thus we can say this is an ionic bond.
Thus the difference is that O2 is a covalent substance while NaCl is an ionic substance.
Answer:
The acceleration of the object equals the gravitational acceleration. The mass, size, and shape of the object are not a factor in describing the motion of the object. So all objects, regardless of size or shape or weight, free fall with the same acceleration
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M
Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.
The mole fraction of KBr in the solution is 0.0001
<h3>How to determine the mole of water</h3>
We'll begin by calculating the mass of the water. This can be obtained as follow:
- Volume of water = 0.4 L = 0.4 × 1000 = 400 mL
- Density of water = 1 g/mL
- Mass of water =?
Density = mass / volume
1 = Mass of water / 400
Croiss multiply
Mass of water = 1 × 400
Mass of water = 400 g
Finally, we shall determine the mole of the water
- Mass of water = 400 g
- Molar mass of water = 18.02 g/mol
- Mole of water = ?
Mole = mass / molar mass
Mole of water = 400 / 18.02
Mole of water = 22.2 moles
<h3>How to de terminethe mole of KBr</h3>
- Mass of KBr = 0.3 g
- Molar mass of KBr = 119 g/mol
- Mole of KBr = ?
Mole = mass / molar mass
Mole of KBr = 0.3 / 119
Mole of KBr = 0.0025 mole
<h3>How to determine the mole fraction of KBr</h3>
- Mole of KBr = 0.0025 mole
- Mole of water = 22.2 moles
- Total mole = 0.0025 + 22.2 = 22.2025 moles
- Mole fraction of KBr =?
Mole fraction = mole / total mole
Mole fraction of KBr = 0.0025 / 22.2025
Mole fraction of KBr = 0.0001
Learn more about mole fraction:
brainly.com/question/2769009
#SPJ1