Answer:
<em>A solution containing 60 grams of nano3 completely dissolved in 50. Grams of water at 50°c is classified as being</em> <u>supersaturaded</u>
Explanation:
This question is about solubility.
Regarding solubility, the solutions may be classified as:
- Unsaturated: the concentration is below the maximum concentration permited at the given temperature.
- Saturated: the concentration is the maximum permitted at the given temperature, under normal conditions.
- Supersaturated: the concentration has overcome the maximum permitted at the given temperature. This is possible only under special conditions and is a very unstable state.
Each substance has its own, unique solubility properties. So, in order to tell the state of the solution you need to compare with either solubility tables, or solubility curves; or run you own experiments.
- In internet you can find the solubility curve of NaNO₃ showing the solubility for a wide range of temperatures.
- In such curve the solubility of NaNO₃ at 50°C is about 115 g of NaNO₃ per 100 g of water.
- Hence, do the proportion to determine the amount of solute that can be dissolved in 50 grams of water at 50°CÑ
115 g NaNO₃ / 100 g H₂O = x / 50 g H₂O ⇒ x = 57.5 g NaNO₃
- <u>Conclusion</u>: 50 grams of water can contain 57.5 g of NaNO₃ dissolved; so, <em>a solution containing 60 g of NaNO₃ completely dissolved in 50 grams of water is supersaturated.</em>
<em />
<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:

We are given:
Mass of
= 39.963998 u
Mass of
= 39.962591 u
To calculate the mass defect, we use the equation:

Putting values in above equation, we get:

To calculate the energy released, we use the equation:

(Conversion factor:
)

Hence, the energy released in the given nuclear reaction is 1.3106 MeV.
D sublevel because the s sublevel has one orbital, the p sublevel has three orbitals, the d sublevel has five orbitals, and the f sublevel has seven orbitals. In the first period, only the 1s sublevel is being filled.
(I know this is late so hopefully other people find it helpful)
<u>Answer</u>: Solid Cu
Since this is a <u>voltaic cell</u>:
<u>Copper</u> is the cathode, therefore having a positive charge.
<u>Zinc</u> is the anode, therefore having a negative charge.
(Also, I took the exam and it's correct; good luck everyone!)