From the equation q=mCΔT, set the q of copper = to q of water,
So --- mCΔT(copper)=mCΔT(water).
mass (Cu - copper) = 38g
mass (H2O - water) = 15g
C (H2O) = 4.184 J/g*C
ΔΤ (H2O) = 33-22 = 11*C
ΔΤ (Cu) = 33-80 = -47*C (the final temp is the same for both materials - thermal equilibrium)
C (Cu) = ?
So --- 38(-47)C[Cu]=15(4.184)(11)
--- C[Cu]=690.36/(-1786) = 0.3865 J/g*C, or 0.39 in 2 sig figs. (The negative goes away, because specific heats are usually positive)
<span>The reactants have a slightly greater mass. In a nuclear reaction, a small amount of mass
is converted to energy according to the equation E = mc2. The difference in mass is referred to as the
mass defect.</span>
<span>An enzyme is a protein, and proteins need certain temperatures to function optimally, or even function. Temperature may unfold the protein and may stop its functioning, or it may fold the protein into the correct formation to function. But by the way your question asks, EXCESS heat would denature the enzyme and cease function.</span>