You know that when the displacement is equal to the amplitude (A), the velocity is zero, which implies that the kinetic energy (KE) is zeero, so the total mechanical energy (ME) is the potential energy (PE).
And you know that the potential energy, PE, is [ 1/2 ] k (x^2)
Then, use x = A, to calculate the PE in the point where ME = PE.
ME = PE = [1/2] k (A)^2.
At half of the amplitude, x = A/2 => PE = [ 1/2] k (A/2)^2
=> PE = [1/4] { [1/2]k(A)^2 } = .[1/4] ME
So, if PE is 1/4 of ME, KE is 3/4 of ME.
And the answer is 3/4
Answer:
42244138.951 m
Explanation:
G = Gravitational constant = 6.667 × 10⁻¹¹ m³/kgs²
r = Radius of orbit from center of earth
M = Mass of Earth = 5.98 × 10²⁴ kg
m = Mass of Satellite
The satellite revolves around the Earth at a constant speed
Speed = Distance / Time
The distance is the perimeter of the orbit

The Centripetal force of the satellite is balanced by the universal gravitational force

The radius as measured from the center of the Earth) of the orbit of a geosynchronous satellite that circles the earth is 42244138.951 m
Answer:
I would say the answer is A... but I'm not so sure ....
B. they both involve wave interaction.