A sound wave leaves the loudspeaker. As it travels, it experiences a temporary increase in wavelength and then returns to its original wavelength. The sound wave traveled through a helium balloon (helium is less dense than air could explain this change in wavelength
The pattern of disruption brought on by energy moving away from the sound source is known as a sound wave. Longitudinal waves are what makeup sound. This indicates that the direction of energy wave propagation and particle vibrational propagation are parallel. The atoms oscillate when they are put into vibration.
A high-pressure and a low-pressure zone are created in the medium as a result of this constant back and forth action. Compressions and rarefactions, respectively, are terms used to describe these high- and low-pressure zones. The sound waves go from one medium to another as a result of these regions being transmitted to the surrounding media.
To learn more about sound waves please visit -
brainly.com/question/11797560
#SPJ1
Answer:
The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
Explanation:
From the question we are told that
The distance between earth and Retah is 
Here c is the peed of light with value 
The time taken to reach Retah from earth is 
The velocity of the spacecraft is mathematically evaluated as

substituting values


The time elapsed in the spacecraft’s frame is mathematically evaluated as

substituting value
![T = 90000 * \sqrt{ 1 - \frac{[2.4*10^{8}]^2}{[3.0*10^{8}]^2} }](https://tex.z-dn.net/?f=T%20%20%3D%20%2090000%20%2A%20%20%5Csqrt%7B%201%20-%20%20%5Cfrac%7B%5B2.4%2A10%5E%7B8%7D%5D%5E2%7D%7B%5B3.0%2A10%5E%7B8%7D%5D%5E2%7D%20%7D)

=> 
So The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1