1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
5

First to answer will be the brainliest i need the answer ASAP

Physics
1 answer:
slavikrds [6]3 years ago
5 0
The answer is chemical.
You might be interested in
Find the right answer please
Ghella [55]

Answer:

3.78

Explanation:

bc ik it is :3

5 0
3 years ago
Where is potential energy in food stored
AlexFokin [52]
The potential energy is stored in the chemical bonds of the food. When those bonds break up during the metabolic processes, the energy is released. After that, that energy is stored in the Adenosine Triphosphate bonds aka ATP. The simplest way to think is to think of food as the tightly bound atoms. When the chemical bonds between those atoms break, the stored energy in that food is released. 
6 0
3 years ago
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.6 m/s at ground level.
kow [346]

Before the engines fail, the rocket's altitude at time <em>t</em> is given by

y_1(t)=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

and its velocity is

v_1(t)=80.6\dfrac{\rm m}{\rm s}+\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t

The rocket then reaches an altitude of 1150 m at time <em>t</em> such that

1150\,\mathrm m=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

Solve for <em>t</em> to find this time to be

t=11.2\,\mathrm s

At this time, the rocket attains a velocity of

v_1(11.2\,\mathrm s)=124\dfrac{\rm m}{\rm s}

When it's in freefall, the rocket's altitude is given by

y_2(t)=1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity, and its velocity is

v_2(t)=124\dfrac{\rm m}{\rm s}-gt

(a) After the first 11.2 s of flight, the rocket is in the air for as long as it takes for y_2(t) to reach 0:

1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=32.6\,\mathrm s

So the rocket is in motion for a total of 11.2 s + 32.6 s = 43.4 s.

(b) Recall that

{v_f}^2-{v_i}^2=2a\Delta y

where v_f and v_i denote final and initial velocities, respecitively, a denotes acceleration, and \Delta y the difference in altitudes over some time interval. At its maximum height, the rocket has zero velocity. After the engines fail, the rocket will keep moving upward for a little while before it starts to fall to the ground, which means y_2 will contain the information we need to find the maximum height.

-\left(124\dfrac{\rm m}{\rm s}\right)^2=-2g(y_{\rm max}-1150\,\mathrm m)

Solve for y_{\rm max} and we find that the rocket reaches a maximum altitude of about 1930 m.

(c) In part (a), we found the time it takes for the rocket to hit the ground (relative to y_2(t)) to be about 32.6 s. Plug this into v_2(t) to find the velocity before it crashes:

v_2(32.6\,\mathrm s)=-196\frac{\rm m}{\rm s}

That is, the rocket has a velocity of 196 m/s in the downward direction as it hits the ground.

3 0
3 years ago
As the distance between two charged objects increases, the strength of the electrical force between the objects
GuDViN [60]

Answer:

I believe the answer is It increases

4 0
3 years ago
An hydrogen molecule consists of two hydrogen atoms whose total mass is 3.3×10−27 kg and whose moment of inertia about an axis p
dlinn [17]

Answer:

6.9631\times 10^{-11}\ m

Explanation:

I = Moment of inertia = 4\times 10^{-48}\ kg m^2

m = Mass of two atoms = 2m = 3.3\times 10^{-27}\ kg

r  = distance between axis and rotation mass

Moment of inertia of the system is given by

I=mr^2\\\Rightarrow I=2mr^2\\\Rightarrow 4\times 10^{-48}=3.3\times 10^{-27}\times r^2\\\Rightarrow r=\sqrt{\frac{4\times 10^{-48}}{3.3\times 10^{-27}}}\\\Rightarrow r=3.48155\times 10^{-11}\ m

The distance between the atoms will be two times the distance between axis and rotation mass.

d=2r\\\Rightarrow d=2\times 3.48155\times 10^{-11}\\\Rightarrow d=6.9631\times 10^{-11}\ m

Therefore, the distance between the two atoms is 6.9631\times 10^{-11}\ m

3 0
3 years ago
Other questions:
  • At distances greater than 2 femtometers, the nuclear strong force is stronger than (select all that apply):
    13·2 answers
  • A weight lifter picks up a barbell and 1. lifts it chest high 2. holds it for 30 seconds 3. puts it down slowly (but does not dr
    10·1 answer
  • Screws and wedges are modified blank
    15·1 answer
  • Which of these is not an example of a physical change?
    6·2 answers
  • Why is science literacy important?
    8·1 answer
  • How do hurricanes differ from tornadoes?
    12·1 answer
  • neptune is an average distance of 4.5×10^12m from the sun. Estimate the length of the Neptunian year.
    14·1 answer
  • In one half hour, a car traveled 35km. What was the speed of the car?
    11·1 answer
  • I need help wit this physics question.
    15·1 answer
  • All waves transmit energy. Only one type of wave does not require a medium to transmit energy. That is a _____wave?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!