Answer:
i beleive it is the 3rd choice
Step-by-step explanation:
The answer is not correct
<span>If 10% of x is 20,
----------
</span><span>then x = 200.</span><span>what is 23% of x?
----------
23% = (23/100)*200 = 46</span>
Answer:
Zero, based on the information provided.
Step-by-step explanation:
The output rate of the teller machine is (1 transaction/6 minutes). The input rate is (1 customer/10 minutes). This means that the machine completes a cycle faster than the customers arrive, on the average. I don't know how an average can be calculated without more information. If we assume customers arrive every 10 minutes, and no one screws up the machine, that there should be no waiting line. Is there more information about when the customers arrive? E.g., 50 arrive in the first hour the machine is open.
Let's solve the equation 2k^2 = 9 + 3k
First, subtract each side by (9+3k) to get 0 on the right side of the equation
2k^2 = 9 + 3k
2k^2 - (9+3k) = 9+3k - (9+3k)
2k^2 - 9 - 3k = 9 + 3k - 9 - 3k
2k^2 - 3k - 9 = 0
As you see, we got a quadratic equation of general form ax^2 + bx + c, in which a = 2, b= -3, and c = -9.
Δ = b^2 - 4ac
Δ = (-3)^2 - 4 (2)(-9)
Δ<u /> = 9 + 72
Δ<u /> = 81
Δ<u />>0 so the equation got 2 real solutions:
k = (-b + √Δ)/2a = (-(-3) + √<u />81) / 2*2 = (3+9)/4 = 12/4 = 3
AND
k = (-b -√Δ)/2a = (-(-3) - √<u />81)/2*2 = (3-9)/4 = -6/4 = -3/2
So the solutions to 2k^2 = 9+3k are k=3 and k=-3/2
A rational number is either an integer number, or a decimal number that got a definitive number of digits after the decimal point.
3 is an integer number, so it's rational.
-3/2 = -1.5, and -1.5 got a definitive number of digit after the decimal point, so it's rational.
So 2k^2 = 9 + 3k have two rational solutions (Option B).
Hope this Helps! :)