Answer:
(a) 7.315 x 10^(-14) N
(b) - 7.315 x 10^(-14) N
Explanation:
As you referred at the final remark, the electron and proton undergo a magnetic force of same magnitude but opposite direction. Using the definition of magnetic force, a cross product must be done. One technique is either calculate the magnitude of the velocity and magnetic field and multiplying by sin (90°), but it is necessary to assure both vectors are perpendicular between each other ( which is not the case) or do directly the cross product dealing with a determinant (which is the most convenient approach), thus,
(a) The electron has a velocity defined as: ![\overrightarrow{v}=(2.4x10^{6} i + 3.6x10^{6} j) \frac{[m]}{[s]}\\\\](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%282.4x10%5E%7B6%7D%20i%20%2B%203.6x10%5E%7B6%7D%20j%29%20%5Cfrac%7B%5Bm%5D%7D%7B%5Bs%5D%7D%5C%5C%5C%5C)
In respect to the magnetic field; ![\overrightarrow{B}=(0.027 i - 0.15 j) [T]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BB%7D%3D%280.027%20i%20-%200.15%20j%29%20%5BT%5D)
The magnetic force can be written as;
![\overrightarrow{F} = q(\overrightarrow{v} x \overrightarrow{B})\\ \\\\\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%20%3D%20q%28%5Coverrightarrow%7Bv%7D%20x%20%5Coverrightarrow%7BB%7D%29%5C%5C%20%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D)
Bear in mind
thus,
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= -1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20-1.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%287.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%287.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
(b) Considering the proton charge has the same magnitude as electron does, but the sign is positive, thus
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= 1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(-7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (-7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=-7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%201.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%28-7.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%28-7.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D-7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
Final remarks: The cross product was performed in R3 due to the geometrical conditions of the problem.
Answer:
heat, energy that is transferred from one body to another as the result of a difference in temperature. If two bodies at different temperatures are brought together, energy is transferred—i.e., heat flows—from the hotter body to the colder. example: stove
Explanation:
hope this helps
Answer:
A unit is represented in kWH or Kilowatt Hour. This is the actual electricity or energy used. If you use 1000 Watts or 1 Kilowatt of power for 1 hour then you consume 1 unit or 1 Kilowatt-Hour (kWh) of electricity.
A run though an open field during a thunderstorm is the answer
The magnitude of the magnetic dipole moment of the bar magnet is 1.2 Am²
<h3>
Magnetic dipole moment of the bar magnet</h3>
The magnitude of the magnetic dipole moment of the bar magnet at distance from its axis is calculated as follows;

where;
- B is magnetic field
- m is dipole moment
- μ is permeability of free space
m = (4π x 0.1³ x 2.4 x 10⁻⁴)/(2 x 4π x 10⁻⁷)
m = 1.2 Am²
The complete question is below:
What is the magnitude of the magnetic dipole moment of the bar magnet from 0.1 m of its axis and magnetic field strength of 2.4 x 10⁻⁴ T.
Learn more about dipole moment here: brainly.com/question/27590192
#SPJ11