Answer
Given,
y(x, t) = (3.5 cm) cos(2.7 x − 92 t)
comparing the given equation with general equation
y(x,t) = A cos(k x - ω t)
A = 3.5 cm , k = 2.7 rad/m , ω = 92 rad/s
we know,
a) ω =2πf
f = 92/ 2π
f = 14.64 Hz
b) Wavelength of the wave
we now, k = 2π/λ
2π/λ = 2.7
λ = 2 π/2.7
λ = 2.33 m
c) Speed of wave
v = ν λ
v = 14.64 x 2.33
v = 34.11 m/s
Answer:
The answer is "case law".
Explanation:
This law is not based on law, but on legislatures, statutes, or legislation, on judgments. Its also used as a different term with common law, which is the collection of precedents as well as power on a specific subject established in previous judicial decisions that are a part of Common law, which is also recognized as case law to establish by the court system based on legal case law.
Answer: reaction force = -558N
Explanation:
w = f = 558N
since action force and reaction force are equal in magnitude and opposite in direction,
reaction force = -(f)
reaction force = -558N
if that helps.
Answer:
F = f from Newton’s first law.
Explanation:
since the desk is moved in a straight line at a constant speed, newton first law tell us that the two forces must be equal.
Newton's First Law states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. since the table has been set in motion by the 400 N force, it will remain in motion unless it is been acted upon by an external force, and this means that the 400 N must be equal to the frictional force for it to have been in motion in the first instance.
Answer:
Explanation:
a )
change in the gravitational potential energy of the bear-Earth system during the slide = mgh
= 45 x 9.8 x 11
= 4851 J
b )
kinetic energy of bear just before hitting the ground
= 1/2 m v²
= .5 x 45 x 5.8²
= 756.9 J
c ) If the average frictional force that acts on the sliding bear be F
negative work done by friction
= F x 11 J
then ,
4851 J - F x 11 = 756.9 J
F x 11 = 4851 J - 756.9 J
= 4094.1 J
F = 4094.1 / 11
= 372.2 N