Answer:
A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
Explanation:
please mark me as the brainliest please please
Displacement is B) the shortest distance between the starting point and the ending point of a motion
Explanation:
Displacement is a vector quantity; it is a vector connecting the initial position to the final position of motion of an object.
Since it is a vector, it has both a magnitude and a direction:
- The magnitude of the displacement is the length of the vector, therefore it corresponds to the shortest distance in a straight line between the starting point and the ending point of the motion
- The direction goes from the starting point to the ending point
Therefore, the correct answer is
B) the shortest distance between the starting point and the ending point of a motion
Note that displacement is very different from distance. Consider for example an object moving in a circle, returning to its initial position: in this case, the distance covered by the object is not zero (it is the length of the circle), however the displacement is zero, because the initial position corresponds to the ending position.
Learn more about distance and displacement:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>
Explanation:
The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:
• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>
• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
• They emit sufficient radiation at wavelengths conducive to photosynthesis.
• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.
<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>
Momentum of the wagon increases by (200 x 3)
= 600 newton-sec
= 600 kg-m/sec
The net force will be zero. Since the forces are in opposite direction and equal amount, they will cancel out.