GPE = 78,380 J
w = 39,240 N
First list what you know. You know the elephants mass and it’s height. You also know gravity on Earth. I will use g = 9.81.
m = 4,000 kg
h = 20 m
g = 9.81 m/s^2
You need to find the elephants weight. Weight = mass x gravity
w = mg
w = (4000 kg)(9.81 m/s^2)
w = 39,240 N (N = newtons)
Now, knowing the elephants weight, you can calculate its GPE.
Gravitational Potential Energy = weight x height
GPE = wh
GPE = (39,240N)(20m)
GPE = 78,380 J (J = joules)
Answer:
Explanation:El ejercicio vigoroso previene en mayor medida el síndrome metabólico (un conjunto de enfermedades que aumentan el riesgo cardiovascular )
mientras que una reacción vigorosa se produce entre el aluminio y el gas cloro. Como consecuencia de la gran cantidad de energía liberada se producen luz y calor
Answer:

Explanation:
Given data
Current I=82µA=82×10⁻⁶A
Resistance R=2.4×10⁵Ω
to find
Voltage
Solution
From Ohms law we know that:

Answer:
22.2 m/s
Explanation:
First, we need to convert km to m by multiplying by 1000. This means that the car traveled 320 000 meters.
Next, we convert hours to minutes by multiplying by 3600 (the number of seconds in an hour). This means that overall, the car traveled 320 000 m in 14 400 seconds.
The average speed can be found by using the equation
. After substitution, this gives the fraction
, which reduces to 22
m/s, or about 22.2 m/s.
Answer:
delta r(x) = (delta (r)) * cos(alpha), delta r(y) = (delta(r)) * sin(alpha)
Explanation:
Well it's a simple rule I guess...