Answer:
Fringe width = 21 mm
Explanation:
Fringe width is given by the formula

here we know that

L = 4.0 m
d = 0.108 mm
now from above formula we will have


so fringe width on the wall will be 21 mm
Answer:
2) f = 0.707 Hz
Explanation:
Given m₁ = 1.0 kg , f₁ = 1.0 Hz
So using the equation
f₁ = ( 1 / 2 π ) * √K / m₁
Solve to determine K' constant of spring
K = m * ( 4 π ² * f ² )
K = 1.0 kg * ( 4 π ² 1.0² Hz )
K = 39.4784176
So given 2.0 kg the frequency can be find using formula
f₂ = ( 1 / 2 π ) * √K / m₂
f₂ = ( 1 / 2 π ) * √39.4784176 / 2.0 kg
f₂ = 0.707 Hz
To solve the problem we will require the concept of Force as a definition of pressure and Area, and the concept of light pressure itself determined by the relationship between intensity and the speed at which light travels. We will match the terms and find the desired force value,

Here,
P = Pressure
A = Area
Pressure due to the light of the sun will be

Here,
I = Intensity
c = Speed velocity
Equation both therms we have that

We have a circular area then

Replacing with our values (Adding the radius of the Earth)


Therefore the Force on Earth due to radiation pressure is 
Answer:
r = 255.68 m
Explanation:
When a body moves in a circular path, an acceleration, due to constant change in its direction, is developed, known as centripetal acceleration. The centripetal acceleration acts towards the center of the circular path. The formula to calculate the centripetal acceleration is given as follows:
ac = v²/r
where,
ac = centripetal acceleration = 22 m/s²
v = tangential speed = 75 m/s
r = radius of curve = ?
Therefore,
22 m/s² = (75 m/s)²/r
r = (75 m/s)²/(22 m/s²)
<u>r = 255.68 m</u>
Answer: h = 3.34 m
Explanation:
If the hat is thrown straight up, then at its highest point it has no motion and no kinetic energy. All energy is potential energy
PE = mgh
h = PE/mg = 4.92 / (0.150(9.81)) = 3.34352... ≈3.34 m