Answer:
Example
0.5 mol of sodium hydroxide is dissolved in 2 dm3 of water. Calculate the concentration of the sodium hydroxide solution formed.
Concentration =
Concentration = 0.25 mol/dm3
Volume units
Volumes used in concentration calculations must be in dm3, not in cm3. It is useful to know that 1 dm3 = 1000 cm3. This means:
divide by 1000 to convert from cm3 to dm3
multiply by 1000 to convert from dm3 to cm3
For example, 250 cm3 is 0.25 dm3 (250 ÷ 1000). It is often easiest to convert from cm3 to dm3 before continuing with a concentration calculation.
Question
100 cm3 of dilute hydrochloric acid contains 0.02 mol of dissolved hydrogen chloride. Calculate the concentration of the acid in mol/dm3.
Reveal answer
Converting between units
The relative formula mass of the solute is used to convert between mol/dm3 and g/dm3:
to convert from mol/dm3 to g/dm3, multiply by the relative formula mass
to convert from g/dm3 to mol/dm3, divide by the relative formula mass
Remember: the molar mass is the Ar or Mr in grams per mol.
Example
Calculate the concentration of 0.1 mol/dm3 sodium hydroxide solution in g/dm3. (Mr of NaOH = 40)
Concentration = 0.1 × 40
= 4 g/dm3
1) The more mass is the more entropy , because there are more particles, there is disorder.
2) Than higher temperature --- the more entropy.
3) Gas has more disorder than liquid, so gas has more entropy.
So, correct answer is E.
Answer:
Mass = 9.58 g
Explanation:
Given data:
Mass of Zn = 2g
Theoretical yield of ZnI₂ = ?
Solution:
Chemical equation:
Zn + I₂ → ZnI₂
Number of moles of Zn:
Number of moles = mass/molar mass
Number of moles = 2g / 65.38 g/mol
Number of moles = 0.03 mol
Now we will compare the moles of Zn and ZnI₂.
Zn : ZnI₂
1 : 1
0.03 : 0.03
Mass of ZnI₂:
Mass = number of moles × molar mass
Mass = 0.03 mol × 319.22 g/mol
Mass = 9.58 g
Catenation is the property by which it can make bonds with other carbon<span> atoms to form long chains. Hence, </span>carbon<span>, with the least diffuse valence shell p orbital is capable of forming longer p-p sigma bonded chains of atoms than heavier elements which bond via higher valence shell orbitals.</span>