Answer:
METHOD 1: (surface area of a solid reactant) METHOD 2: (concentration or pressure of a reactant)
Explanation:
METHOD 1: (surface area of a solid reactant) Increasing the surface area of a solid reactant exposes more of its particles to attack. This results in an increased chance of collisions between reactant particles, so there are more collisions in any given time and the rate of reaction increases.
METHOD 2: (concentration or pressure of a reactant) Increasing the concentration means that we have more particles in the same volume of solution. This increases the chance of collisions between reactant particles, resulting in more collisions in any given time and a faster reaction. As we increase the pressure of reacting gases, we increase the rate of reaction.
Answer:
I don't know if this is right but try it. The amount of water vapor in the air is called absolute humidity. The amount of water vapor in the air as compared with the amount of water that the air could hold is called relative humidity. This amount of space in air that can hold water changes depending on the temperature and pressure.
B will make little difference to reaction rate while C and D will reduce the reaction rate. So the answer is A. adding heat energy to the reactants
.
This information confirms that temperature and solubility are related. The higher the temperature is, the more soluble.
Answer: The one listed below that's NOT an example of potential energy is mechanical energy. Mechanical energy is categorized as a kinetic energy with light, sound, and thermal/heat energy.
HOPE THIS HELPS