Answer:
[NaCH₃COO] = 2.26M
Explanation:
17% by mass is a sort of concentration. Gives the information about grams of solute in 100 g of solution. (In this case, 17 g of NaCH₃COO)
Let's determine the volume of solution, by density
Mass of solution / Volume of solution = Solution density
100 g / Volume of solution = 1.09 g/mL
100 g / 1.09 g/mL = 91.7 mL
17 grams of solute is contained in 91.7 mL
Molarity (M) = Mol of solute /L of solution
91.7 mL / 1000 = 0.0917L
17 g / 82 g/m = 0.207 moles
Molariy = 0.207 moles / 0.0917L → 2.26M
We can call a person by the word gentleman and Sir or from his/her real name.
If there is a name/surname you can't make out due to a speaker's manner of speech then I will call him gentleman or Sir or I will ask him his real name. Gentleman is a word that is used for noble person and Sir word is also used in order to give someone respect.
Call a person with his real name is also comes under the manner of speech so we can conclude that we can call a person by the word gentleman and Sir or from his/her real name.
Learn more about manner of speech here:
Learn more: brainly.com/question/26023566
Answer: Revoke the driver's license for at least 12 months
Explanation:
Chemical tests are used in order to measure the amount of drugs or alcohol that is in the body of a person when the person was arrested. To do this, samples of the urine or blood of the person can be taken and the result will be used to know if the person was driving under the influence of alcohol or not.
If the person refuse a legal chemical test issued by a law enforcement officer, the Division of Motor Vehicles is required to revoke the the driver's license of the person for at least 12 months.
Molar mass (CaCl2) = 40.1 +2*35.5 = 111.1 g/mol
Molar mass (AlCl3) = 27.0 +3*35.5= 133.5 g/ mol
3CaCl2+Al2O3 -------->3CaO +2AlCl3
mole from reaction 3 mol 2 mol
mass from reaction 3mol* 111.1g/mol 2 mol*133.5g/mol
333.3 g 267.0 g
mass from problem 45.7 g x g
Proportion:
333.3 g CaCl2 ------- 267.0 g AlCl3
45.7 g CaCl2 -------- x g AlCl3
x=45.7*267.0/333.3= 36.6 g AlCl3
Answer:
The correct answer is 160.37 KJ/mol.
Explanation:
To find the activation energy in the given case, there is a need to use the Arrhenius equation, which is,
k = Ae^-Ea/RT
k1 = Ae^-Ea/RT1 and k2 = Ae^-Ea/RT2
k2/k1 = e^-Ea/R (1/T2-1/T1)
ln(k2/k1) = Ea/R (1/T1-1/T2)
The values of rate constant k1 and k2 are 3.61 * 10^-15 s^-1 and 8.66 * 10^-7 s^-1.
The temperatures T1 and T2 are 298 K and 425 K respectively.
Now by filling the values we get:
ln (8.66*10^-7/3.61*10^-15) = Ea/R (1/298-1/425)
19.29 = Ea/R * 0.001
Ea = 160.37 KJ/mol