2m/s^2, this is because F=ma, meaning a is also equal to F/m. The car applies 1500N in one direction and outside sources apply a total of -500N, meaning the 500kg car is moving forward with a total of 1000N of force. Taking the total 1000N and dividing it by 500kg gives you and acceleration of 2m/s^2. Hope this helps!
Answer:
Initial velocity, U = 28.73m/s
Explanation:
Given the following data;
Final velocity, V = 35m/s
Acceleration, a = 5m/s²
Distance, S = 40m
To find the initial velocity (U), we would use the third equation of motion.
V² = U² + 2aS
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
35² = U + 2*5*40
1225 = U² + 400
U² = 1225 - 400
U² = 825
Taking the square root of both sides, we have;
Initial velocity, U = 28.73m/s
The index of refraction of light varies from color to color. TRUE.
Running on sand requires 1.6 times more energy spent than running on hard surface, so the force applied by our foot on sand is less.
Break into small particles. The heat causes the rock to break up and form pebbles or sand. Hope that helped. Have a nice day