It might be to late but the answer is C
The answer should be C. In this question
Answer:
<em>b. The current in the loop always flows in a counterclockwise direction.</em>
<em></em>
Explanation:
When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.
According to Newton's 3rd law, for every force applied, there's an equal and opposite force that will occur. So when you are walking , you are pushed forward but the plain is "pushed back" from the force
Explanation:
- A force is a push or a pull that acts upon an object as a results of its interaction with another object. Forces result from interactions.
- The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.
- According to Newton, whenever objects A and B interact with each other, they exert forces upon each other.
- A variety of action-reaction force pairs are evident in nature.
It should be A) Force increases