Answer:
Carbon dioxide
Explanation:
Neither helium nor carbon dioxide has a molecular dipole, so their strongest van der Waals attractive forces are London forces.
Helium is a small spherical atom with only a two electrons, so its atoms have quite weak attractions to each other.
CO₂ is a large linear molecule. It has more electrons than helium, so the attractive forces are greater. Furthermore, the molecules can align themselves compactly side-by-side and maximize the attractions (see below).
For example. CO₂ becomes a solid at -78 °C, but helium must be cooled to -272 °C to make it freeze (that's just 1 °C above absolute zero).
Answer:
the Glancing angle is the angle between the incident ray and plane mirror which is 90o in the given case. The angle between the direction of the incident ray and the reflected ray is the angle of deviation. Since the angle of deviation for a plane mirror is twice the glancing angle, the angle of deviation is 1800.
There are 137 atoms in this molecule. C55 + H72 = 127. 127 + Mg (one atom of magnesium = 128. 128 + N4 = 132. 132 + O5 = 137.
The value of equilibrium constant is equal to the quotient of the products raised to its stoichiometric coefficient over the reaction's reactants raised to its respective stoichiometric coeff. The equation is Kc=[SO2][Cl2]/[SO2Cl2]= [1.3*10^-2][1.3*10^-2]/[2.2*10^-2-<span>1.3*10^-2]=0.0188. The final answer is Kc=0.0188.</span>
Well, I think it's mainly for photosynthesis and gas exchange. A leaf is normally flat, light, and thin, so that the sunlight can get to the chloroplasts in the cells.