1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashcka [7]
3 years ago
10

How many grams of N2 are in 44.8L at STP?

Chemistry
1 answer:
lutik1710 [3]3 years ago
3 0

Answer: 10 i think

Explanation:

You might be interested in
If you have 110.0 grams of an unknown compound that contains 12.3 grams of hydrogen, what is the percent by mass of hydrogen in
Vladimir [108]
All you have to do is a simple division "parts over the whole"

12.3 grams H/ 110 grams compound x 100= 11.2%
8 0
3 years ago
Read 2 more answers
What is the speed of a cheetah that runs 30 miles in 0.5 hours?<br> a
REY [17]

Answer:

60 mph (miles per hour)

Explanation:

0.5 hours is 1/2 of an hour, so to get the number of miles for a whole hour you multiply the miles ran by 2.

30 times 2 is 60.

6 0
2 years ago
Read 2 more answers
How does carbon dioxide get into the atmosphere?
e-lub [12.9K]

Answer:

By condensation.

Explanation:

Have a nice day dear

3 0
2 years ago
Read 2 more answers
The volume of a sample gas, initially at 25 C and 158 mL, increased to 450 mL. What is the final temperature of the sample of ga
Rashid [163]

Answer:

Final temperature of the gas is  576 ^{0}\textrm{C}.

Explanation:

As the amount of gas and pressure of the gas remains constant therefore in accordance with Charles's law:

                                       \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}

where V_{1} and V_{2} are volume of gas at T_{1} and T_{2} temperature (in kelvin scale) respectively.

Here V_{1}=158mL , T_{1}=(273+25)K=298K and V_{2}=450mL

So  T_{2}=\frac{V_{2}T_{1}}{V_{1}}=\frac{(450mL)\times (298K)}{(158mL)}=849K 

849 K = (849-273) ^{0}\textrm{C} = 576 ^{0}\textrm{C}

So final temperature of the gas is  576 ^{0}\textrm{C}.

3 0
3 years ago
The expression of the theoretical yield (TY) in function of limiting reagent (LR) of a reaction is as follows: TY = ideal mole r
spin [16.1K]

<u>Answer:</u> The theoretical yield of acetanilide is 6.5 grams.

<u>Explanation:</u>

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}      .....(1)

  • <u>For aniline:</u>

Given mass of aniline = 4.50\times 10^0=4.50g      (We know that:  10^0=1 )

Molar mass of aniline = 93.13 g/mol

Putting values in equation 1, we get:

\text{Moles of aniline}=\frac{4.50g}{93.13g/mol}=0.048mol

  • <u>For acetic anhydride:</u>

To calculate the mass of acetic anhydride, we use the equation:

\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}

Volume of acetic anhydride = (1.25\times \text{Mass of aniline})=1.25\times 4.50=5.625mL

Density of acetic anhydride = 1.08 g/mL

Putting values in above equation:

1.08g/mL=\frac{\text{Mass of acetic anhydride}}{5.625mL}\\\\\text{Mass of acetic anhydride}=(1.08g/mL\times 5.625mL)=6.08g

Given mass of acetic anhydride = 6.08 g

Molar mass of acetic anhydride = 102.1 g/mol

Putting values in equation 1, we get:

\text{Moles of acetic anhydride}=\frac{6.08g}{102.1g/mol}=0.06mol

The chemical equation for the reaction of aniline and acetic anhydride follows:

C_6H_5NH_2+CH_3COOCOCH_3\rightarrow C_6H_5NHCOCH_3+CH_3COOH

By Stoichiometry of the reaction:

1 mole of aniline reacts with 1 mole of acetic anhydride

So, 0.048 moles of aniline will react with = \frac{1}{1}\times 0.048=0.048mol of acetic anhydride

As, given amount of acetic anhydride is more than the required amount. So, it is considered as an excess reagent.

Thus, aniline is considered as a limiting reagent because it limits the formation of product.

By Stoichiometry of the reaction:

1 mole of aniline produces 1 mole of acetanilide

So, 0.048 moles of aniline will produce = \frac{1}{1}\times 0.048=0.048mol of acetanilide

Now, calculating the theoretical yield of acetanilide by using equation 1:

Moles of acetanilide = 0.048 moles

Molar mass of acetanilide = 135.17 g/mol

Putting values in equation 1, we get:

0.048mol=\frac{\text{Mass of acetanilide}}{135.17g/mol}\\\\\text{Mass of acetanilide}=(0.048mol\times 135.17g/mol)=6.5g

Hence, the theoretical yield of acetanilide is 6.5 grams.

3 0
3 years ago
Other questions:
  • Given: 2LiBr + I2 → 2LiI + Br2 Calculate the mass of bromine produced when 9.033 × 1023 particles of iodine (I2) react completel
    8·1 answer
  • How much heat is absorbed by a 56g iron skillet when its temperature rises from 15oC to 27oC?
    12·1 answer
  • What changes as you descend through the water column
    15·1 answer
  • 3h2(g)+n2(g)→2nh3(g)
    15·1 answer
  • Which choice best describes a testable hypothesis?
    11·1 answer
  • Suppose you are shooting a basketball toward a hoop. As the ball rises in the air, its ---------------- energy increases and its
    10·2 answers
  • Please help does anybody know how to calculate the molar mass of a compound?
    5·2 answers
  • The wavelength of the violet light emitted from a hydrogen atom is 410.1 nm. This light is a result of electronic transitions be
    12·1 answer
  • What is the mass of 3.5 mol of MgBr2?
    10·1 answer
  • How many atoms are in 5Na3PO4​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!